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 63 

Preliminaries 64 

 The examples used to illustrate different applications are not central to the purpose of this 65 

book and are not recent. Some of the applications have been discussed in an unpublished but 66 

widely circulated paper by the present author that is reproduced in Appendix A (original errors 67 

have been corrected and the conversion to the phase convention used by everyone except 68 

electrical engineers has been made.) 69 

 70 

2.1 Nomenclature 71 

Italicized lower case letters are used for physical variables, e.g. {x, y, z, r} for distances, t for 72 

time, and q for charge; italicized upper case letters are used for specific values of variables and 73 

field magnitudes, e.g. {X, Y, Z, R}, T, Q. Vectors are denoted by bold face upper case letters with 74 

an arrow V
r

 and tensors are denoted by bold face upper case T . 75 

There are two time constants for relaxation of polarization, one for relaxation at constant electric 76 

field (i.e. dielectric relaxation of the displacement D
r

) denoted by E  and one for relaxation at 77 

constant displacement (i.e. conductivity relaxation of the electric field E
r

) denoted by D . 78 

Amongst other things these two distinct time constants correspond to two microscopic time 79 

constants for a single macroscopic dielectric time constant, as has been briefly discussed in ref. 80 

[1]. 81 

Dielectric and conductivity relaxations can both occur in the same material over two 82 

resolvable frequency ranges and the usual nomenclature for the low and high frequency limits of a 83 

single relaxation process (e.g. 0  and   for the relative permittivity) is ambiguous and has 84 

caused confusion in a long standing debate about the legitimacy of the electric modulus 85 

formalism. We introduce a new nomenclature here to distinguish the low and high frequency 86 

limits for the two possible relaxations that, although somewhat clumsy, eliminates this confusion. 87 

The two limits for a dielectric relaxation at constant E
r

 are denoted by 0

E  and E  and the two 88 

limits for a conductivity relaxation at constant D
r

 are denoted by 0

D  and D . Since a 89 

conductivity relaxation must in general occur at lower frequencies than a dielectric relaxation for 90 

the latter to be readily observed (with some exceptions depending on instrumental sensitivity) 91 

then 0

D E   , although overlap can occur. 92 

Electric charge is denoted by q (Coulomb C), volume charge density by    3Cm , 93 

surface charge density by   
2

C m


, linear charge density by   
-1Cm , current by I (Ampere = A = 94 

C s
-1

), current density by J  2A m , electric potential by E   1V=J C , electric field by E 95 

 1 1NC Vm  , electric dipole moment by E  (C.m), resistance by R (Ohm = 
1

V A


  ), and 96 

capacitance by C (Farad F = 
1

C V


). The SI unit for conductance (=1/resistance) is the Siemen S 97 

(equal to 1 ). 98 

99 
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2.2 Electromagnetism 100 

2.2.1 Units 101 

Two systems of electromagnetic units are in use, the cgs (centimeter-gram-second) and the 102 

MKS (meter-kilogram-second) or SI (Systeme Internationale). The SI system is the official 103 

scientific system but the cgs system appears in older publications and since it is still used by 104 

chemists and materials scientists its relationship to the SI system is delineated here. For 105 

mechanics only the numerical value of physical quantities changes with the system of units, but in 106 

electromagnetism there is an additional difference of approach: electric charge in the cgs system 107 

is defined in the fundamental units mass-length-time whereas in the SI it is defined to be just as 108 

fundamental as mass, length and time: this SI unit of charge is the Coulomb. 109 

The cgs form of Coulomb’s law for the force F between two point charges 1q  and 2q  110 

separated by a distance r and immersed in a medium of (dimensionless) permittivity   is 111 

 112 

1 2

2

q q
F

r
 ,           (2.1) 113 

 114 

that gives dimensions of 1/2 3/2 1M L T   for the electrostatic unit (esu) of charge. The cgs equation 115 

for the magnetic force between two straight parallel conductors of length L carrying currents 1I  116 

and 2I  and separated by a distance r in a material of (dimensionless) magnetic permeability   is 117 

 118 

1 22 LI I
F

r


 ,           (2.2) 119 

 120 

that gives dimensions of 1/2 1/2M L  for the electromagnetic unit (emu) of charge. The esu and emu 121 

units differ by a factor 1LT   that has the dimensions of speed and the value of the speed of light, 122 

c. This is the reason that c enters into many cgs formulae. Numerically, emu esuc  (c in cgs 123 

units = 102.9979 10  cm/s). 124 

 The Coulomb C is defined experimentally by its time derivative, the current in amperes A, 125 

that in turn is determined using eq. (2.2). A constant 0  is inserted into the SI form for this 126 

magnetic force to ensure consistency with the cgs system: the same force is produced by the same 127 

currents separated by the same distance 128 

 129 

0 1 2

4

LI I
F

r




 .          (2.3) 130 

 131 

Equations (2.2) and (2.3) reveal that 7 2

0 4 10 N.A     . The factor 4  arises from Gauss’s 132 

Law [eq. (1.150) and eq. (2.19) below]. The SI form of Coulomb’s law is 133 

 134 

1 2

2

04 e

q q
F

r 
 ,          (2.4) 135 

 136 
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where 0e  is a constant (the permittivity of free space), with dimensions 2 1 3 2Q M L T   that 137 

correspond to the units of capacitance per unit length (Farads meter 1 ). Comparing eqs. (2.1) and 138 

(2.4) reveals that  139 

 140 

   
2 2

0esu Coulomb / 4 e .         (2.5) 141 

 142 

The numerical relations between C, esu and emu are 9 1C 3 10 esu 10 emu   , where the 143 

approximate equality arises from placing the speed of light at 83 10  m/s rather than 144 
82.9979... 10  m/s. The dimensionless fine structure constant   in cgs units is 145 

2 2/ 2 /e c e hc  h  (e in esu) and in SI units is 2 2

0 02 / 4 e / 2ee hc e hc     (e in 146 

Coulomb). It is easily confirmed that the SI value of   is dimensionless and has the same 147 

numerical value as the cgs value.  148 

 Having illustrated the cgs system to this point it is now dispensed with apart from one 149 

exception: the unit for the molecular dipole moment. In the SI system this is the coulomb-meter 150 

but this unit is inconveniently large and is rarely (ever?) used. The more common unit is the 151 

Debye, defined as the dipole moment created by two opposite charges of 1010  esu  203.3 10 C  152 

separated by 1.0 Angstrom  1010 m . The persistence of this unit probably originates in the fact 153 

that molecular dipole moments are of order unity when expressed in Debyes but of order 3010  in 154 

coulomb-meters. It is not clear to this author why a convenient SI unit such as 3110  C.m 0.33  155 

Debye or 3010  C.m 3.3  Debye has not been introduced, especially since the SI unit nm has 156 

replaced the Angstrom in optical spectroscopy. 157 

 158 

2.2.2 Electromagnetic Quantities 159 

 Many of these are conveniently defined using a parallel plate capacitor comprising two 160 

conducting flat plates, each of area A and separated by a distance d. The geometric "cell constant" 161 

k  is 162 

 163 

/k d A .           (2.6) 164 

 165 

Each plate has a charge of magnitude 0q  but of opposite sign (uniformly distributed since the 166 

plates are conducting) that produces an electric potential difference V  between the plates. The 167 

capacitance is 0 /C q V  that has the units unit Farad = C V
-1

. The surface charge density 168 

0 0 /q A    on the plates induces an interfacial charge density im  on each surface of any 169 

dielectric material between the plates. The electric field E
r

, polarization P
r

 and displacement 170 

vector D
r

 are perpendicular to the plates with magnitudes defined by the following table: 171 

 172 

  SI    cgs    173 

        0D             04D         (2.7) 174 

         iP             iP         (2.8) 175 
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      0 0e iE D P         04 4iE D P            (2.9) 176 

 177 

The charge densities 0  and i  generate an electrostatic potential E  (in volts) and net volume 178 

charge density   for which 179 

 180 

 D
r

            (2.10) 181 

 182 

and 183 

 184 

EE
r

.            (2.11) 185 

 186 

The inverse of eq. (2.11) is 187 

 188 
2

1

1,2

s

s

d  E s
r r
g             (2.12) 189 

 190 

where 1,2  is the potential difference between the points 1s  and 2s . The relative permittivity   191 

and dielectric susceptibility d  are defined in the following table: 192 

 193 

       SI         cgs     194 

0e

D

E
      

D

E
         (2.13) 195 

0

0 0

e
1

e e
d

D EP

E E
 


       

1
1

4 4
d

P D E

E E
 

 


       (2.14) 196 

A dielectric material between the plates decreases the electric field between the plates 197 

because the induced polarization charge density i  on the surface of the material partly cancels 198 

the unchanged charge density on the plates [eq. (2.9)]. The units of D and P (charge area 1 ) 199 

correspond to dipole moment (charge-distance) per unit volume. In view of D
r

, E
r

 and P
r
 being 200 

vectors the relative permittivity and dielectric susceptibility are in general tensors but for isotropic 201 

media (liquids, glasses, and isotropic crystals) D, E, P and   are all scalars. We mostly treat them 202 

as scalars in this book. 203 

 The magnetic analogs of D, E, P, 0e ,    and d  are, respectively, the magnetic induction 204 

B, the magnetic field H, the magnetization M, the permeability of free space, 0 , the relative 205 

permeability  , and the magnetic susceptibility m . The SI and cgs definitions are 206 

207 
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 208 

      SI       cgs   209 

0B H    B H         (2.15) 210 

0

B
M H


     

4

B H
M




        (2.16) 211 

B

H
     

B

H
         (2.17) 212 

0

= 1M

M B

H H



    = = 1

4
M

M B

H H



       (2.18) 213 

 214 

2.2.3 Electrostatics 215 

 Gauss’s Law is 216 

 217 

0e • •enclosed free

S S

d q d q
 
 
 
 

  E A D A
r rr r

Ñ Ñ ,       (2.19) 218 

 219 

where enclosedq  is the total net charge within a closed surface S of magnitude A,   is the relative 220 

permittivity of the material enclosed by the surface, and the surface integral is the flux of the 221 

electric field through the surface. For the definition in terms of D
r

 the quantity free
q  does not 222 

include the induced polarization charges because these are subsumed into the permittivity 0e  . 223 

Equation (2.19) is the electrical version of the mathematical Gauss's Theorem in Chapter One [eq. 224 

1.146)]. As noted in Chapter One the differential area vector d A
r

 of a surface is defined as having 225 

a direction perpendicular to the plane of the surface, and for closed surfaces such as occur in 226 

Gauss’s Law the outward pointing direction is defined to be positive. The Gaussian surface is a 227 

purely mathematical object that can be placed anywhere although it must have the same symmetry 228 

as the system under study to be helpful. Thus information about charge distribution can be 229 

inferred even though E is determined by the total enclosed charge. 230 

 Gauss's Law is now used to calculate E
r

 and the capacitance C for several geometries and 231 

charge distributions. The geometrical objects and charges are taken to be immersed in a medium 232 

of relative permittivity  . 233 

 234 

2.2.3.1 Point Charge (Coulomb’s Law) 235 

Define the Gaussian surface S as a sphere of radius r with a point charge q at its center. By 236 

symmetry E
r

 is everywhere parallel to da
r

 and has a constant magnitude E obtained from 237 
2

0 0e 4 eq d r E     E A
rr

Ñ  so that 238 

 239 

2

04 e

q
E

r
 .           (2.20) 240 

 241 
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2.2.3.2 Long Thin Rod with Uniform Linear Charge Density   242 

 Define the Gaussian surface to be a cylinder of radius r  and length L, with the rod on its 243 

central axis. Then  0 0e e 2
S

q E rL    E•dA
rr

Ñ  so that at a distance r from the axis  244 

 245 

02 e
E

r




 .           (2.21) 246 

 247 

2.2.3.3 Flat Insulating Plate 248 

Let a charge q be uniformly distributed over the two sides of a flat insulating plate of 249 

"infinite area" (no edge effects) so that the charge on each surface is q/2. Define   as the charge 250 

per unit area so that the charge density on each surface is / 2 . Define the Gaussian surface as a 251 

cylinder whose axis is parallel with the area vector of one side of the plate and has one end inside 252 

the plate and the other end in a medium of relative permittivity  . Then the electric field points 253 

away from each surface of the plate (since q is positive) and 0 0/ 2 / 2 e e
S

q A EA     E•dA
rr

Ñ  254 

so that 255 

 256 

02e
E




 .           (2.22) 257 

 258 

This electric field is constant and independent of distance from the plate. 259 

 260 

2.2.3.4 Flat Conducting Plate 261 

Let the charge on each side of the plate be q/2 and define the Gaussian surface to be the 262 

same as that for the insulating plate in §2.2.3.3. The electrostatic field inside a conductor is zero 263 

so that the electric field points away each surface of the plate and 264 

0 0/ 2 / 2 e e
S

q A EA     E•dA
rr

Ñ  so that  265 

 266 

02 e
E




 .           (2.23) 267 

 268 

This electric field is again constant and is also independent of distance from the plate 269 

 270 

2.2.3.5 Two Parallel Insulating Flat Plates 271 

 Consider charges ±q that are uniformly distributed over both surfaces of the plate. The 272 

field between the plates is the vector sum of the fields from each plate. Since the field from the 273 

positively charged plate points away from the positive plate and the field from the negatively 274 

charged plate points toward the negative plate the two fields add up and the electric field is twice 275 

that of eq. (2.22): 276 

 277 
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0e
E




 .           (2.24) 278 

 279 

2.2.3.6 Two Parallel Conducting Flat Plates 280 

 Charges ±q on each plate are attracted to the opposite charges on the other plate so that the 281 

charges on each plate will lie totally on the inside surface and the charge density on each interior 282 

surface is /q A  . Since the effect of one plate on the other has been taken into account in this 283 

case the electric fields do not add up and the field between the plates is again 284 

 285 

0e
E




 .           (2.25) 286 

 287 

The charge density on the outer surface of each plate is zero so that the electric field outside the 288 

plates is also zero.  289 

 The capacitance is obtained from the voltage difference .V E d V between the plates and 290 

0q A : 291 

 292 

    0 0
0 0

0 0

e e /
e /

A A dq
C A d k

V Ed

 
 

 
     ,      (2.26) 293 

 294 

where k is the "cell constant" corresponding to the effective A/d for the container of the dielectric. 295 

 296 

2.2.3.7 Concentric Conducting Cylinders 297 

 Define the inner and outer radii of two concentric conducting cylindrical plates to be a and 298 

b, respectively, let their equal height be h, and let charges +q and –q be uniformly distributed on 299 

the inside surfaces of each plate. Consider a concentric cylindrical Gaussian surface of radius 300 

a r b   and height h, so that  0e • 2
S

q d E rh   E A
rr

i .Then  301 

 302 

 02 eE q rh            (2.27) 303 

 304 

so that 305 

 306 

0 0

ln
2 e 2 e

b
b

a
a

q dr q b
V Edr

h r h a   

   
     

  
        (2.28) 307 

 308 

and the capacitance is 309 

 310 

 
02 e

ln

hq
C

bV
a

 
             (2.29) 311 
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 312 

2.2.3.8 Concentric Conducting Spheres 313 

 Define the inner and outer radii of two concentric spherical conducting plates to be a and 314 

b, respectively, and let charges +q and –q reside on the inside surfaces of each plate. Consider a 315 

concentric spherical Gaussian surface of radius a r b   so that 
2

0e 4
S

q d E r     E A
rr

Ñ  and 316 

2

04eE q r    . Then 317 

 318 

2
0 0 0

1 1

4 e 4 e 4 e

b
b

a
a

q dr q q a b
V Edr

r b a ab     

   
   
   


          (2.30) 319 

 320 

and 321 

04 e
q ab

C
V b a

 
 

   
 

.         (2.31) 322 

 323 

2.2.3.9 Isolated Sphere 324 

 The capacitance of an isolated sphere is obtained from eq. (2.31) by taking the limit 325 

b  and for convenience placing a R : 326 

 327 

04 eC R  .           (2.32) 328 

 329 

Thus larger spheres have larger capacitances. 330 

 331 

2.2.4 Electrodynamics 332 

 Consider a constant voltage V  applied across two parallel plates between which there is 333 

now a conducting medium. Let the resistivity of the material be 
1.R k   (units ohm-meter) and 334 

specific conductivity 1/   (units S m
-1

), where R is the resistance between the plates in ohms 335 

and the symbol S refers to the SI unit Siemen defined as the reciprocal of the ohm. The current 336 

density J
r

 is the electric current per unit area (units 2A m ) so that  J E
r r

. Unfortunately the 337 

displacement current 0/ /dD dt d dt  (better named as the displacement current density) has no 338 

symbol. 339 

 Electric current, symbol I, is defined as 340 

 341 
dq

I
dt

            (2.33) 342 

 343 

so that the total charge that passes across a plane through which a current I flows is 344 

 345 

0

'

t

q I dt  .           (2.34) 346 

 347 
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The electric potential E  is not defined for electrodynamics (see §2.5 below on Maxwell's 348 

equations) and is replaced by the symbol voltage V  (unfortunately also used for the unit volt). 349 

Ohm’s Law for the electrical resistance R (SI unit ohm    is then 350 

 351 
V

R
I

            (2.35) 352 

 353 

and /V A . An electrical conductor is said to be ohmic if, and only if, R is constant. This is 354 

not the same as /dV dI   constant: for example if 1.0 2V I   so that 2dV dI   then 355 

3  for 1AR I   , 2.5  for 2AR I   , 2.3  for 3AR I   . 356 

 Resistances dissipate power P given by P I V  (recall that energy is given by QV and 357 

power is the time derivative of energy). For ohmic resistances 358 

 359 

 

 

2

2/ / .

P I V

I I R I R

V R V V R



 

 

          (2.36) 360 

 361 

2.2.5 Maxwell’s Equations 362 

 These four equations summarize all that is known about electromagnetic phenomena – 363 

they are essentially the electromagnetic equivalent of Newton's laws for mechanics but more 364 

mathematically sophisticated because of the greater complexity of electromagnetic phenomena. 365 

The differential forms of the four Maxwell equations are: 366 

 367 

 D
r r
g ;           (2.37) 368 

0 B
r r
g ;           (2.38) 369 

t

 
   

 

B
E

r
r r

;          (2.39) 370 

t

 
    

 

D
H J

r
r r r

           (2.40) 371 

          
t


 

   
 

D
E

r
r

          (2.41) 372 

          
0e

t




 
   

 

E
E

r
r

.         (2.42) 373 

 374 

Equation (2.40) for a vacuum is equivalent to 375 

 376 

0 0 0e
t

 
 

    
 

E
B J

r
r r r

,         (2.43) 377 
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where   is the specific electrical conductivity (units  1 1 1m Sm    , B
r

 is the magnetic 378 

induction, and H
r

 is the magnetic field. Equations (2.40) - (2.42) merit some discussion. The 379 

equation  H J
r r r

 might perhaps be expected instead of eq. (2.40) but this has the nonsensical 380 

implication that there could never be any sources or sinks of current anywhere at any time, 381 

because the vector identity   0  H
r r r

g  would then imply 0 J
r r
g . The difficulty is resolved 382 

by noting that for a charging or discharging parallel plate capacitor (for example) charge flow in 383 

the external circuit joining the two capacitor plates, corresponding to 0 /dq dt  where 0q  is the 384 

charge on the capacitor plates (see §2.1.2 above), must be compensated for by an opposite change 385 

of the polarization charges between the plates (to ensure charge conservation). Thus  386 

 387 

  00 i
q q

t t

 
     

 

    
    
    

H
r r r r

g         (2.44) 388 

is ensured. 389 

The term / t D
r

 in eq. (2.40) can correspond for example to a localized (molecular 390 

diameter) effective spatial translation of charge due to rotation of an electric dipole about its 391 

center of mass that has a close analogy to an ion hopping to an adjacent site (see §2.2.1.2). It is 392 

called the displacement current. The term displacement “current” has been claimed to be a 393 

misnomer but this is true only if a current is interpreted to be a long range translational migration 394 

of charge. If the definition of current as /dq dt  is adopted it is not a misnomer because q (on 395 

capacitor plates for example) changes with time [eq. (2.44)], and furthermore a traditional current 396 

must be present in an external circuit to compensate for /iq t  . Describing / t D
r

 as a 397 

“fictitious current”, as has been done in at least one popular text book, is disingenuous and 398 

misleading because eq. (2.40) demonstrates that / t D
r

 is just as important in determining a 399 

magnetic field as migration of individual charges. 400 

The vector potential A
r

 is defined by 401 

 402 

 A B
rr r

            (2.45) 403 

 404 

and 405 

 406 

E
t




  


A
E

r
r r

,          (2.46) 407 

 408 

and essentially ensures consistency between electrostatics and electrodynamics. Equation (2.45) 409 

ensures eq. (2.38) because of the vector identity   0  A
rr r

g  and eqs. (2.45) and (2.46) 410 

together ensure that eq. (2.39) remains true in dynamic situations where E  is undefined. The 411 

vector potential is essentially an extension of the Coulomb potential E  to dynamic situations 412 

because the definition of E  from E
 E

r
 [eq. (2.11)] is definable only in static situations, as the 413 
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following consideration indicates: if / 0t  B
r

 then 0 E
r r

 by eq. (2.38) and the static 414 

relation  415 

 416 

EE
r r

            (2.47) 417 

 418 

could then never hold because of the vector identity   0E  
r r

. But E
r

 is known to be 419 

nonzero in dynamic situations [CHECK]. Similarly if 0J
r

 or / 0t  D
r

 then there is no 420 

potential B  for B
r

 (defined by BB
r r

) because eq. (2.40) then implies 
0

/ 0  H B
r r r r

 421 

because of the same vector identity   0B  
r r

. Both these difficulties are averted by the 422 

introduction of A
r

. Equation (2.46) is then consistent with eq. (2.39) since it guarantees 423 

 424 

E
t t


 
 
 
 

 
     

 

A B
E

r r
r r r r

.        (2.48) 425 

 426 

 Integral versions of Maxwell’s equations include Faraday’s Law: 427 

 428 

magnetic flux;B
B

d
d d

dt



     E s B A

rr rr
g gÑÑ       (2.49) 429 

 430 

and Ampere’s law 431 

 432 

0 0 0e ; electric fluxE
Eenclosed

d
d I d

dt
 


     B s E A

rr rr
g gÑ Ñ .   (2.50) 433 

 434 

 Equation (2.42) provides a convenient demonstration of the equivalence of the complex 435 

permittivity and complex conductivity. First convert eq. (2.42) from a vector equation to a 436 

complex scalar equation: 437 

 438 

0 0

*
e * * e *

E
E

t t


  

   
         

   

E
H E H

r
r r r r r

.     (2.51) 439 

 440 

For a sinusoidal excitation  0
* expE E i t   eq. (2.51) becomes  441 

 442 

     

   

     

0 0 0

0 0

0 0 0

* exp e * exp

* e * exp

* * / e e exp ,

E i t E i i t

i E i t

i i E i t

    

   

    

    

  

     

H
r r

      (2.52) 443 

 444 
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indicating that both the complex conductivity  0* e *i    and complex permittivity 445 

 0* */ ei      provide equivalent descriptions of electrical relaxation, as do the resistivity 446 

* 1/ *   and electric modulus * 1/ *M  . All these different functions emphasize or suppress 447 

different facets of experimental data in the same way that Fourier transforms do for example [see 448 

eq. (2.106) below]. 449 

 450 

2.2.6 Electromagnetic Waves 451 

The Maxwell equations together with the constitutive relations 0
e D E

r r
 and 0

 B H
r r

 452 

predict transverse electromagnetic (em) waves traveling at the speed of light /c n  given by 453 

 454 

 

   

1/2

0 0

1/2 1/2

0 0

1/ e 1

e

c

n



  
  ,        (2.53) 455 

 456 

where 457 

 458 

 
1/2

n             (2.54) 459 

 460 

is the refractive index. In a nonmagnetic material for which 1   and  
2

* *n   461 

 462 

     
2 2 2 2* ' " ' " 2 ' " * ' "n n in n n in n i               (2.55) 463 

 464 

so that 465 

 466 
2 2' ' "n n              (2.56) 467 

 468 

and 469 

 470 

" 2 ' "n n  .           (2.57) 471 

 472 

For the general case of a magnetic material where the relative magnetic permeability is also 473 

complex, * ' "i    , 474 

 475 

      
2 2 2* ' " 2 ' " ' " ' "n n n in n i i               (2.58) 476 

 477 

so that 478 

 479 

          
2 2 2* ' " 2 ' " ' " ' " ' ' " " ' " " 'n n n in n i i i                     , (2.59) 480 

 481 



Page 15 of 61 
 

and 482 

 483 

 " ' " " 'n      .           (2.60) 484 

 485 

Thus absorption of electromagnetic energy by magnetically lossy materials is enhanced by a high 486 

relative permittivity and dielectric loss is enhanced in magnetic materials. 487 

 The electric field component of a plane electromagnetic traveling wave of angular 488 

frequency   propagating in the +x direction in a medium with refractive index n and speed c/n is 489 

  0, exp
nx

E x t E i t
c


  

    
  

,        (2.61) 490 

 491 

and similarly for the magnetic field component. For complex * ' "n n in   eq. (2.61) becomes 492 

 493 

 
 

0

0

' "
, exp

' "
exp exp ,

n n x
E x t E i t

c

n x n x
E i t

c c






   
    

   

     
      

    

      (2.62) 494 

 495 

so that E  decays exponentially with distance +x into the medium. The intensity 
2

I E  of em 496 

waves is then 497 

 498 

 2

0

0

' "
exp 2

' 2 "
exp 2 exp ,

n in x
I E i t

c

n x n x
E i t

c c






   
    

   

     
      

    

      (2.63) 499 

 500 

that is to be compared with Beer’s Law 501 

 502 

 0
expI I x  ,           (2.64) 503 

 504 

where   is the extinction coefficient (usually expressed in neper m
-1

 where the dimensionless 505 

neper is used to emphasize that the logarithmic form of eq. (2.64) implies the Naperian 506 

logarithm). Equations (2.63) and (2.64) yield 507 

 508 

 
 2 "n

c

 
   .          (2.65) 509 

 510 

 The sign convention for imaginary numbers mentioned in the Introduction of Chapter One 511 

is seen at work here. If the sinusoidal perturbation was defined as 512 
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    0, exp /E x t E i t nx c    and the sign of the imaginary component of *  remained 513 

negative then   would have to be negative and Beer’s Law would predict unphysical exponential 514 

growth through a medium. This can be resolved by making the imaginary component of *  515 

positive but this corresponds to a dipole rotation that leads the excitation voltage rather than lags 516 

it. Nonetheless this is the convention used by electrical engineers and is the price paid for the 517 

“advantage” of having a positive sign in the complex exponential. An excellent account of phase 518 

conventions is given in Chapter One of ref. [2]. 519 

 Insertion of eq. (2.57) into eq. (2.65) yields 520 

 521 

 
 

 

"

'n c

 
 


 ,          (2.66) 522 

 523 

and since  0
" '/ e    then 524 

 525 

 
 

  0

'

' en c

 
 


 .          (2.67) 526 

 527 

Thus ", ", and 'n     are all measures of absorption of electrical energy: 528 

 529 

0

' " 2 "

e

n

n c nc c

  
    .         (2.68) 530 

 531 

 Ordinary em radiation comprises randomly distributed directions of polarization for the E
r

 532 

and B
r

 fields (that are always perpendicular to one another). Radiation for which the direction of 533 

polarization is constant and the same for all waves is said to be polarized. Reflected em waves are 534 

partially polarized in the direction parallel to the reflecting surface, the extent of polarization 535 

depending on the angle of incidence. Polaroid® sun glasses are polarized in the vertical direction 536 

and therefore more strongly attenuate reflected waves. Reflected em waves are fully polarized at 537 

the Brewster incident angle. 538 

 539 

2.2.7 Local Electric Fields 540 

 The electric field inside a dielectric medium is not equal to the applied field because of 541 

electrostatic screening by the medium. This is a complicated problem that is well described in 542 

Chapter One of ref. [3] (by N. E. Hill) and has been considered by Onsager [4], Kirkwood [5], 543 

and Frohlich [6]. The complexity of the issue is illustrated by the Kirkwood relation between the 544 

isolated molecular dipole moment g  observed in the gas phase and the relative permittivity 0

E  545 

 546 

  
 

2
0 0

0 0

24

9 e 2

E E E E

g

E E
B

Ng

k TV

    

 

 



 



,        (2.69) 547 
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 548 

where E  is the limiting high frequency relative permittivity that for a pure dielectric equals the 549 

square of the (limiting low frequency) refractive index n
2
, N is the number of dipoles in a volume 550 

V, and g is a correlation factor that corrects for nonrandom orientations of surrounding dipoles 551 

caused by direction dependent intermolecular forces. The latter is in principle calculable: 552 

 553 

 1 cos
N

ij

i j

g 


  ,          (2.70) 554 

 555 

where the averaged cosine  cos ij  of the angle ij  between dipoles i  and j  can be 556 

computed for specific orientation geometries. 557 

 The treatment of local field effects on the kinetics of dipole relaxation is even more 558 

intricate because the reaction field produced by polarization of the dielectric medium by the 559 

embedded dipole is in general out of phase with the applied field. These effects have been 560 

discussed by Mountain [7]. A particularly important effect of local fields on relaxation 561 

phenomenology is that a single macroscopic dielectric relaxation time corresponds to two 562 

microscopic times. After a heated debate in the literature the accepted microscopic dipole 563 

correlation function is the Fatuzzo and Mason [8] expression 564 

 565 

 
1

0

0 0

1

0 0

1 exp exp
2 2

1 exp exp ,
2 2

E E

E D

t t
t

t t

 


    

 

   



 





 

       
           

       

       
           

       

     (2.71) 566 

 567 

where E  and D  are again the relaxation times for polarization at constant E and D respectively. 568 

Fulton [9] has given a detailed discussion of this subject in which he deduced that the longitudinal 569 

part of polarization relaxes with a time constant D  and that the transverse component relaxes 570 

with a time constant E . Electrical relaxation is therefore discussed later in this chapter in two 571 

parts - dielectric relaxation and conductivity relaxation. 572 

 573 

2.2.8 Circuits 574 

There are the four fundamental elements in analog passive circuits: resistance R; 575 

capacitance C; self inductance L; mutual inductance M.  576 

 577 

2.2.8.1 Simple Circuits 578 

Resistances in Series and in Parallel 579 

For resistances Ri connected in series the same current I must pass through each and the 580 

sum of the voltages across each resistor equals the applied voltage. Thus i i sV V I R IR     581 

and the equivalent series resistance Rs is 582 
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 583 

s i
R R .           (2.72) 584 

 585 

For resistances Ri connected in parallel the same voltage V must occur across each and 586 

the total current I through the parallel circuit is the sum of the currents through each 587 

resistance: /
i iI I V R    so that the equivalent parallel resistance Rp is given by 588 

 589 

1 1
p i

R R .           (2.73) 590 

 591 

Capacitances in Series and in Parallel 592 

 Capacitance C is defined as C q V , where V is the voltage across the capacitor and q  593 

are the charges on each of its ends. For capacitances Ci connected in parallel the same voltage 594 

V must occur across each and the total charge q on each side of the equivalent parallel 595 

capacitance pC  must equal the sum of charges qi on each component. Thus 596 

i i p

i i

q q V C C V    and the equivalent parallel capacitance pC is given by 597 

 598 

p i

i

C C .            (2.74) 599 

 600 

 For capacitances connected in series the total voltage V across the series circuit equals the 601 

sum of voltages across each capacitor. The magnitude of the charges q on each must be the same 602 

(since no charge separation can occur across the short circuit joining them) so that 603 

/ /s i i

i i

V q C V q C     and the equivalent series capacitance Cs is given by 604 

 605 

1 1

is i
C C

 .           (2.75) 606 

 607 

Inductances in Series and in Parallel 608 

 The self-inductance L is defined as  / /L V dI dt  where V is the voltage across the 609 

device and I is the current through it. Since V  is in the numerator and I is in the denominator L is 610 

an impedance akin to R. Impedances add in series so the equivalent series inductance Ls is 611 

 612 

s i

i

L L ,           (2.76) 613 

 614 

and since admittances add in parallel the equivalent parallel inductance Ip is 615 

 616 

1 1

is iL L
             (2.77) 617 
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 618 

 For the sake of completion the mutual inductance M is now described although for reasons 619 

given below it rarely comes into play for relaxation phenomena or insrumentation. It is defined as 620 

 2 1/ /M V dI dt , where V2 is the voltage induced on one side of the device by a time varying 621 

current I1 in the other. Rearrangement of this definition of M  yields 622 

 623 

 2 1 /V M dI dt ,          (2.78) 624 

 625 

so that V2 is smaller at lower frequencies when dI1/dt is smaller. This is why transformer arm (ac 626 

Wheatstone) bridges are useless at low frequencies. Series and parallel combinations of mutual 627 

inductances add up in the same way as self inductances. 628 

 629 

Combined Series and Parallel Elements 630 

 Consider two examples of a circuit in which an element Z1 is in parallel with a series 631 

combination of two elements Z2 and Z3. If these elements are resistances R1, R2 and R3 then  632 

R23 = R2 + R3 and  633 

 634 

 
1 2 3

1 2 3 1 2 3

1 1 1

equiv

R R R

R R R R R R R

 
  

 
         (2.79) 635 

 636 

or 637 

 638 

 1 2 3

1 2 3

equiv

R R R
R

R R R




 
.          (2.80) 639 

 640 

 If these elements are capacitances C1, C2 and C3 then 641 

 23 2 3 23 2 3 2 3
1/ 1/ 1/ /C C C C C C C C      and 642 

 643 

2 3 1 2 2 3 3 1
1 23 1

2 3 2 3

equiv

C C C C C C C C
C C C C

C C C C

 
    

 
.     (2.81) 644 

 645 

2.2.8.2 AC Circuits 646 

 If a voltage      0 0
cos Re[ exp ]V t V t V i t     is applied across a circuit the average 647 

voltage over one period is zero but the ac power is not. Equation (2.36) indicates that power is 648 

determined by the averages of 2I and 
2V that are both proportional to the averages of  2sin t  or 649 

 2cos t  over one cycle that are both equal to 1
2 . Thus 650 

 651 

 2 2
0 0 ./ 2 / 2averageP V R I R          (2.82) 652 

 653 

The ac power dissipation is therefore given by the same relation for DC power dissipation if the 654 
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maximum ac voltage  0V  and current  0I  are replaced by 
1/2

0 / 2V  and 
1/2

0 / 2I  respectively. The 655 

latter are referred to as rms (root mean square) voltages and currents. Electrical outlet ac voltages 656 

such as 120V in North America are given as rms values; the peak voltage in North America is 657 

therefore   
1/2

120V 2 170V . 658 

 AC impedances  *Z i  are defined as    * / *V i I i   and ac admittances  *A i  as 659 

   * / *I i V i  . The imaginary components of  *A i  and  *Z i  are referred to as 660 

reactances, and as shown below do not dissipate power. 661 

 662 

Resistances 663 

 For a voltage  0 expV V i t   applied across a resistance R the current is 664 

 665 

 
 

   0

0
exp exp

R

V i t V
I i t i t V G i t

R R


              (2.83) 666 

 667 

so that the impedance is 668 

 669 

 
 

 

 

   
0*

0

* exp

* / exp
R

V i t V i t
Z i t R

I i t V R i t

 


 


  


      (2.84) 670 

 671 

and the admittance    * *1/R RA i t Z i t G    where G is the conductance. Both R and G are real 672 

and independent of frequency. 673 

 674 

Capacitances 675 

For a capacitance C  the current is 676 

 677 

 
   

 0 expC

dq t dV i t
I i t C V i C i t

dt dt

 
         ,     (2.85) 678 

 679 

the capacitive impedance is 680 

 681 

 
 
 

 

 
0*

0

* exp 1

* exp
C

C

V i t V i t i
Z i t

I i t i C CV i i t

 


    
 


   

 
,    (2.86) 682 

 683 

the capacitive admittance is 684 

 685 

 *

CA i t i C   .          (2.87) 686 
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 687 

The capacitive admittance and admittance are therefore frequency dependent and imaginary. 688 

Power dissipation per cycle in a capacitance is given by 689 

 690 

           

   

   

2

0 0 0

2

0

2

0

exp exp exp 2

cos 2 sin 2

cos 2 sin 2

0

C C C p p

p

p

P t V t I t V i t V i C i t V C i t

V C t i t

V C t i t

    

  

  

            

      

    



(2.88) 691 

 692 

because the averages of both  cos 2 t  and  sin 2 t  over one cycle are zero. The capacitive 693 

impedance is therefore not a resistance if "resistance" is taken to imply power dissipation. This is 694 

why an inductive or capacitive impedance is not considered to be an "ac resistance".  695 

 696 

Inductances 697 

 For a self-inductance L the current is 698 

 699 

 
   0 0

exp exp
L

V i t i tVV
I t dt dt

L L L i

 




     
      

    


 
 

    (2.89) 700 

 701 

so that inductive impedance is 702 

 703 

 
 

 
*

*

*
L

L

V i t
Z i t i L

I i t


 


            (2.90) 704 

 705 

and the inductive admittance is 706 

 707 

 * 1
L

i
A i t

i L L


 
 


.         (2.91) 708 

 709 

The inductive reactance is therefore also imaginary and frequency dependent. Power dissipation 710 

in an inductance is given by 711 

 712 

       
 

   

0
0

2 2

0 0

exp
exp

exp 2 exp 2 0.

L L L

i tV
P t V t I t V i t

L i

V V
i t i t

i L i L






 
 

 
        

     


     (2.92) 713 

 714 

Thus the power dissipated by a pure inductance is zero just like that of a capacitance ("pure" 715 

meaning negligible resistance). 716 
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 717 

Parallel Resistance and Capacitance 718 

 Consider a voltage  0 cosV V t  applied across a resistance Rp in parallel with a 719 

capacitance Cp. The current IR through the resistance is 720 

 721 

 
   0

0 0

cos
cos Re expR p p

p p

V tV
I V t G V G i t

R R


            (2.93) 722 

 723 

where Gp = 1/Rp is the conductance. The current through the capacitance IC is 724 

 725 

 

   

0

0 0

sin

cos / 2 Re exp

C
C p p

p p

dq dV
I C V C t

dt dt

V C t iV C i t

 

    

   

      

     (2.94) 726 

 727 

where qC is the charge on the capacitor. Equation (2.94) implies that the sinusoidal (displacement) 728 

current IC lags the applied voltage by π/2 radians because    sin cos / 2t t    . The total 729 

current through the parallel RpCp circuit is 730 

 731 

   

   

  

0 0

0 0

0

cos sin

Re exp Re exp

Re exp .

R C p p

p p

p p

I I I V G t V C t

V G i t iV C i t

V G i C i t

  

  

 

   

          

    

     (2.95) 732 

 733 

The phase relations for the current are therefore conveniently expressed by defining the parallel 734 

combination of resistance and capacitance as a complex admittance A* 735 

 736 

* p pA G i C  ,          (2.96) 737 

 738 

or as a complex impedance Z* 739 

 740 

2 2 2 2 2 2

1
* 1/ *

p p

p p p p p p

G i C
Z A

G i C G C G C



  
   

  
.      (2.97) 741 

 742 

The complex capacitance is 743 

 744 

*
*

p

p

iGA
C C

i 
  


          (2.98) 745 

 746 

and the complex electric modulus is 747 

 748 
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     * 1/ * *M i C i i Z i     .        (2.99) 749 

 750 

Equation (2.97) is equivalent to 751 

 752 

2 2 2 2
*

1 1

p p D

D D

R iR
Z



   
 

 
         (2.100) 753 

 754 

where 755 

 756 

D p pR C             (2.101) 757 

 758 

is the Maxwell relaxation time (the reason for the subscript D is given below). 759 

 When normalized by the cell constant k (dimensions m
1

) the quantities A*, Z* and C* and 760 

M* become respectively the complex conductivity * *kA  , complex resistivity * */Z k  , 761 

complex relative permittivity 0 0* */e */kC C C    (where C0 is the capacitance of the 762 

measuring cell in a vacuum, usually equated to that in air), and complex modulus M*. Historically 763 

the same symbol has been used for the complex electric modulus defined in terms of measured 764 

circuit elements and as a material property, but this has not caused much (any?) confusion 765 

probably because the inverse capacitance V/q has never been considered as a physically useful 766 

quantity (in this respect it is not clear to this author why conductivity and resistivity should have 767 

separate physical uses either). 768 

 769 

Series Resistance and Capacitance 770 

 For a resistance Rs in series with a capacitance Cs 771 

 772 

 
1

* ,E
s s s

s s E

ii
Z i R R R

i C C




  

 
      

 
      (2.102) 773 

 774 
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2
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1 1 1 1

s s s s s E
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R C R C

  


     
   

   
     (2.103) 775 

 776 
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 
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* 1 1
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1 1 1
s s E

s s

s s E E

A i i R C i
C i C C

i R C

  


     

   
   

  


   

   
   (2.104) 777 

 778 

     * * 1sE
s s E

s E E

Rii
M i i Z i i R i R i

C


     

  

   
        

  
   (2.105) 779 

 780 

where E s sR C   that is generally not equal to D p pR C  . 781 

 The relations between the four response functions are conveniently summarized by [1,10] 782 
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 783 

   

     0 0

* 1/ *

* / e e / *

i M i

i i i i

  

     





c c .        (2.106) 784 

 785 

2.2.8.3 Experimental Factors 786 

Cable Effects 787 

 Cable impedances can be analyzed using transmission line methods that invoke an infinite 788 

number of {L, C} components. One line of the cable is considered to be a series of inductances L 789 

and the other line as a zero impedance wire, with capacitances C connecting the two between 790 

every pair of inductances. In the limit of an infinite number of inductance and capacitance 791 

elements the cable impedance  
1/2

/cableZ L C  is real and constant. Coaxial cables are made so 792 

that C is 30 pF/ft and L is 0.075 / ftH  so that  
1/2

8 117.5 10 / 3.0 10 50cableZ H      . Thus a 793 

short cable with a 50  resistor across it looks like an infinitely long cable and a 50  load on the 794 

cable has an ideal impedance match for maximum power transfer. Such a cable will also behave 795 

as an inductor if short circuited so that for a high conductivity attached sample resonance effects 796 

may be significant. 797 
 798 

Electrode Polarization 799 

This occurs for two and three terminal measurements when charge transfer does not occur 800 

between an electrode and the sample material, i.e. when the applied voltage is less than the 801 

decomposition potential of the sample (four terminal measurements are immune to this but they 802 

do not produce reliable capacitance data and require separate sample preparation). In this case the 803 

electrode-sample contact can be approximated as a capacitance Cs in series with the sample [11-804 

13] that is much larger than the sample capacitance Cp. If the amplitude of the applied potential is 805 

too large (above the decomposition potential of the electrolyte) a Faradaic impedance [14, 15] 806 

will also occur in parallel with this capacitance [16] that can sometimes be approximated as a 807 

Warburg impedance (see §2.4.3). 808 

A series capacitance does not affect  "M   and simply adds 1/Cs to  'M  : the total 809 

impedance  *

totalZ i  of the sample impedance  *Z i  and sC  is    * * 1total sZ i Z i i C     810 

so that 811 

 812 

   ** * 1total sM i i Z i Z i C      .       (2.107) 813 

 814 

It is a considerable advantage of the electric modulus function that  "M   is unaffected by 815 

electrode polarization and other high capacitance phenomena. This is exploited in some of the 816 

methods of data analysis discussed below but it should be noted that some researchers have 817 

correctly noted that M* also suppresses low frequency information (relative to ε* for example), 818 

but it can equally be claimed that ε* suppresses high frequency information. The low frequency 819 
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high capacitance advantage of M* is not shared by the imaginary component of the resistivity "  820 

because 821 

 822 

 
0 0

1
lim " lim

sk C 
 

 

 
   

 
,        (2.108) 823 

 824 

but the low frequency behavior of '  can be useful (see below). 825 

 Electrode polarization can however make the direct determination of the low frequency 826 

quantities 0  and 0  difficult and sometimes impossible because it increases '  above 0  at low 827 

frequencies and, usually at lower frequencies, decreases '  to below 0 . Overlap between bulk 828 

relaxations and these two electrode polarization effects prevents the observation of limiting low 829 

frequency plateaus in  '   and/or  '  . Although relaxation of electrode polarization often 830 

occurs at much lower frequencies than the bulk relaxation, 831 

 832 

00

0 0 0 0

ps
electrode D

єє CC

C C
 

 
   ,        (2.109) 833 

 834 

the magnitude of the polarization dispersion can be very large [proportional to  s p sC C C  ] 835 

and its high frequency tail can extend well into the bulk relaxation region. This phenomenon is 836 

illustrated by the following representative average circuit quantities: a parallel capacitance 837 

10pFpC   and parallel resistance 710 ohmpR   in series with a polarization capacitance of 838 

4
10 pF

s
C  . Because both Rp and Cp will have distributions in a typical electrolyte there will be 839 

dispersions in both '  and '  (see §2.4). The dispersion is centered around 840 

  4 11/ 10 sp pR C    and the low frequency plateau in '  would normally then normally be 841 

seen at ca. 
2 1

10 s


 , but this is dwarfed by the polarization capacitance at that frequency, 842 

    
1

' 2 2 2/ 100pFpol p s s p sC R C C R C 


   , an order of magnitude higher than Cp. On the 843 

other hand, the low frequency dispersion in conductivity due to polarization has barely begun at 844 
210  :  2 2 2 2

0/ / 1 0.99ele ele ele         for   2 110 10 10p sele R C     , where 845 

the fact that the limiting high frequency conductivity for the Debye-like relaxation of electrode 846 

polarization is 0 : 847 

 848 

     0 0 0 0 0 0'

0 0, ,

0 0

e e
lim for 
ele

ele ele ele
ele ele ele

E D


       
   

   

   




  
    ?  (2.110) 849 

 850 

Effects similar to electrode polarization can arise from other causes, such as poor electrode 851 

contact where a capacitance due to air gaps occurs in parallel with a resistance at the contact 852 

areas. Poor contacts have been shown to give spurious dielectric losses in undoped alkali halides 853 
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[17], and is suspected to be responsible for the poor reproducibility of other dielectric data for 854 

alkali halides [18]. Space charge effects can also produce a series capacitance at the electrode 855 

[19,20]. 856 

 857 

2.3 Dielectric Relaxation 858 

 An excellent resource for dielectric relaxation is ref. [3], particularly Chapter One by N. E. 859 

Hill. An excellent review of dielectric relaxation phenomena in supercooled and glassy materials 860 

is given by Richert [21] that also includes references to modern measurement techniques. 861 

 862 

2.3.1 Frequency Domain 863 

2.3.1.1 Dipole Rotation 864 

 A freely rotating dipole in a sinusoidally varying electric field with an angular frequency 865 

ω low enough that the dipole can keep up with the field behaves as a pure capacitance pureC . The 866 

current then lags the field by π/2 radians and the complex admittance is 867 

 868 

* pureA i C .           (2.111) 869 

 870 

If the dipole cannot keep up with the field because of friction with its environment it will lag by 871 

an additional angle   and a component of the current appears in phase with the voltage and is 872 

measured as a resistance. Equation (2.94) is then replaced by 873 

 874 
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   
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0

0

0
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      

    

   

      

    

     (2.112) 875 

 876 

and the term  0 cos sinpV C t    in eq. (2.112) is seen to be in phase with the applied voltage 877 

 0 cosV V t  . This in phase component is of course zero when 0  . Comparing eq. (2.112) 878 

with eqs. (2.95) and (2.96) reveals that 879 

 880 

* sin cospure pureA C i C             (2.113) 881 

 882 

and 883 

 884 

* ' " cos sinpure pureC C iC C iC            (2.114) 885 

 886 

so that 887 

 888 

(effective) sinp pureG C           (2.115) 889 

 890 

and 891 
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 892 

(effective) cosp pureC C  .         (2.116) 893 

 894 

At low frequencies when the lag angle   tends to zero the effective capacitance equals 
pureC  and 895 

Gp = 0, as must be. When normalized by the geometric capacitance associated with the cell 896 

constant k, 0 0e /C k  where 
0e  is the vacuum permittivity 128.854 10  F m

-1
, the complex 897 

capacitance becomes the complex permittivity, 0* */C C   so that 898 

 899 

* ' "i               (2.117) 900 

 901 

where  902 

 903 

   0

0
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C
        ,         (2.118) 904 
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
   

 
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 
,       (2.119) 905 

 906 

and 907 

 908 

"
tan

'

p

p

G

C




 
  .          (2.120) 909 

 910 

Note that tan  is independent of the geometric capacitance 0C  and has the same frequency 911 

dependence as "  but with a retardation time of  
1/2

0

E E

E  
 rather than E . Equations (2.113) 912 

and (2.114) imply 913 

 914 

0* *A i C             (2.121) 915 

 916 

so that 917 

 918 

0* * e *kA i              (2.122) 919 

 920 

and 921 

 922 

0

1 1
*

* e *i


  
             (2.123) 923 

 924 

 The complex electric modulus M* is defined as the reciprocal of * : 925 

 926 
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* 1/ *M             (2.124) 927 

 928 

so that  929 

 930 

0 0* * e *M i C Z i    .         (2.125) 931 

 932 

The functions * , * , *  and *M  are all analytical and their components all conform to the 933 

Cauchy-Riemann and Kronig-Kramers equations. The relationships between them are given in 934 

eq. (2.106). 935 

 For a single relaxation time the (Debye) functions  * i  ,  '   and  "   for 936 

dielectric relaxation are  937 

 938 
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 941 

and 942 
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 945 

where 0

E  and E  are defined in §2.1.1 as the limiting low and high frequency limits of  '   at 946 

constant electric field, respectively. Equations (2.127) and (2.128) yield a complex plane plot of 947 

"  vs '  that is a semicircle centered on the real axis at  0' / 2E E    . This is found by 948 

eliminating E  between equations (2.127) and (2.128) (see Appendix C in Chapter One for 949 

details). 950 

The corresponding Debye functions for  '   and  "   are 951 
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 953 

and 954 
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Thus the real part of the conductivity of a Debye dielectric increases from zero at low frequencies 958 

to a high frequency limit of 959 

 960 

   0 0lim ' =e /E E

E
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  ,        (2.131) 961 

 962 

and the imaginary part diverges at high frequencies. Derivations of the Debye expressions for 963 

 'M   and  "M   are instructive and straightforward but tedious – they are given in Appendix 964 

2.1. The results are 965 
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 967 

and 968 
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 971 

where 0 01/D DM  , 1/E EM   , and  0/E E

E D     . 972 

 If a limiting low frequency conductivity 0  is present that is not physically related to the 973 

dielectric loss process (e.g. ionic conductivity in a dilute aqueous solution), it must be subtracted 974 

from the measured conductivity before the dielectric loss is calculated from eq. (2.128). 975 

Otherwise the limiting low frequency dielectric loss 
0

lim " 0





  will be masked by the rapid rise 976 

from the conductivity contribution 977 

 978 

0

0 0
0

lim " lim
e 




 
  .         (2.134) 979 

 980 

It has been argued that this subtraction is physically meaningful only if the conductivity is 981 

unrelated to the dielectric loss process (as in the aqueous solutions just mentioned). If the 982 

dielectric loss peak correlates with 0  as occurs in alkali silicate glasses [22-28] and other 983 

ionically conducting liquids and glasses then the subtraction of 0  can be regarded as artificial 984 

and other methods of data analysis are preferred (although this position is not universally held). 985 

This is the principle reason for not using the complex permittivity in analyzing highly conducting 986 

materials and is the subject of §2.4. 987 

 If the decay function is nonexponential then dielectric relaxation can be described in terms 988 

of a distribution of retardation times  ln Eg   defined by the relations 989 
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 992 

and 993 

 994 
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 996 

so that eq. (2.126) generalizes to 997 
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 1000 

The generalization of eqs. (2.127) and (2.128) are 1001 
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 1004 

and 1005 
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 1008 

The thn  moments of a distribution function are 1009 
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 1012 

If the integral  ln lnE Eg d 




  diverges, as it does for a constant phase angle impedance for 1013 

example,  ln Eg   is not renormalizable and a constant phase angle impedance can therefore be 1014 

valid only over a limited range in relaxation times. In terms of  t  the moments are  1015 
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 1022 

2.3.1.2 Ionic Hopping 1023 

 Chapter One of [3] by N. E. Hill discusses the studies of Frohlich [6] and others on the 1024 

dielectric relaxation consequences of two state models. We select here the Frohlich account of an 1025 

entity that has only two possible equilibrium positions 1 and 2. The entity could be a molecular 1026 

dipole or an ion for example. If the transition probabilities between the two positions are w12 and 1027 

w21 when there is no applied field then a Debye relaxation with a single relaxation time 1028 

12 211/ ( )E w w    is predicted that has an Arrhenius temperature dependence 1029 

 exp /E EA H RT    where the pre-exponential factor AE is a weak function of temperature and 1030 

H  is the energy barrier that separates the two positions. As noted by Hill, however, a 1031 

nonexponential decay function may result from local field effects. 1032 

 1033 

2.3.2 Time Domain 1034 

 Consider the case where an electric field E is "instantaneously" increased from zero to E0 1035 

across a dielectric sample at time 't t  and kept constant thereafter, i.e.    0
'E t E h t t   where 1036 

h(t) is the Heaviside function (eq. (1.327)). The initially randomized dipoles will partially orient 1037 

themselves over time and the polarization and displacement will both increase (the final average 1038 

orientation will not be complete because of thermal fluctuations): 1039 

 1040 

         0 0 1 ED t D D D t           ,       (2.143) 1041 

 1042 

where  0D  and  D   are the limiting short time (high frequency) and long time (low 1043 

frequency) values of D(t) and  E t  is the decay function for polarization at constant E 1044 

corresponding to  D t . The increase of D from zero to  D   is "instantaneous" compared with 1045 

dielectric relaxation times (generally no shorter than about 1110  s) and is due to polarization of 1046 

molecular electron clouds that occurs roughly on optical time scales. 1047 

 It is sometimes convenient to approximate the relation between time domain data and 1048 

 "   by the Hamon approximation 1049 
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 1052 

obtained from the simplification that the normalized displacement current is given by 1053 

 1054 

~ nEd
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No comparably simple relation exists between  '   and  t . Williams, Watt, Dev and North 1057 

[29] have shown that for the Williams-Watt [30] decay function 1058 

 1059 
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          (2.146) 1060 

 1061 

the Hamon approximation is accurate within 1% for 0 1   but fails for 0 1   and 0.2  . 1062 

Equation (2.144) therefore offers a high frequency approximation to the broadest frequency 1063 

domain Williams-Watt functions that cannot be expressed in terms of named functions. 1064 

 The complex relative permittivity  *  is related to the derivative of  t  by 1065 
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 1068 

where  
00

/
E

D E    and  
0

/0
E

D E

 . In the simplest case  E t  is exponential, 1069 
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 1072 

and insertion of eq. (2.148) into eq. (2.147) yields the Debye equations (2.127) and (2.128) 1073 

[Chapter One of ref. 3]. 1074 

 1075 

2.3.3 Temperature Domain 1076 

 In many situations   and E  are approximately interchangeable variables. Since E  often 1077 

varies strongly with temperature a narrow temperature range can be used as a surrogate for a wide 1078 

frequency range. The temperature dependence of E  is often approximated by the Arrhenius 1079 

relation 1080 

 1081 
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 1083 

where 0  is independent of temperature, R is the ideal gas constant, and Ea is the activation 1084 

energy. A better approximation is the Fulcher equation 1085 
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 1088 

where AF, BF and T0 are positive constants. Thus the variables  ln   at constant  , and Ea/RT 1089 

or BF/(T – T0), are equivalent for a single relaxation time dielectric. In this case eqs. (2.149) and 1090 

(2.150) indicate that over the convenient temperature range from liquid nitrogen (77 K) to room 1091 

temperature (300K) the retardation time can vary over a very large range. For example   changes 1092 

by a factor of 2510  for an average activation energy of 50 kJ/mol. The temperature variable is 1093 

therefore extremely useful for scans of the total relaxation spectrum and is frequently used for 1094 

polymers whose relaxation behavior is typically characterized by widely separated and broad 1095 

relaxation processes. Activation energies Ea are obtained from plots of log frequency ln f  against 1096 

the inverse temperature 1/Tmax at which "  or tan  passes through its maximum: 1097 

 1098 

 
ln

1/

aE d f

R d T

 
   

 
.          (2.151) 1099 

 1100 

It has been reported [32] that the activation energy obtained in this way is ambiguous because it 1101 

depends on whether the derivative is determined in the isothermal frequency domain or in the 1102 

temperature domain at constant frequency: the frequency domain plot of lnfmax vs. 1/T was found 1103 

to be strongly curved whereas the plot of lnf vs. 1/Tmax was found to be linear. 1104 

Although temperature is useful because of its experimental convenience it is not 1105 

quantitative because "everything changes with temperature". For example the dispersion 1106 

 0

E E   can only be estimated because 0

E  and to a less extent E  are temperature dependent, 1107 

although it can be estimated from the relation [33] 1108 
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 1111 

However eq. (2.152) is approximate because of two assumptions in its derivation that must be 1112 

made for mathematical tractability: (i)  0

E E   is independent of temperature [32] and (ii) 1113 

1
1/a aE E


  that is not generally true because of the Schmidt inequality (Chapter One) 1114 

 1115 
1

1/ 1A AE E

 .          (2.153) 1116 

 1117 

The approximation is clearly better for smaller temperature ranges. There are two situations where 1118 

ln  and Ea/RT are not even approximately equivalent however: (i) functions for which   and E  1119 

are not invariably multiplied together (for example the conductivity of a Debye dielectric, eq. 1120 

(2.128)); (ii) distributions of retardation times that change with temperature. 1121 

 1122 



Page 34 of 61 

 

  

2.3.4 Equivalent Circuits 1123 

 The electrical response for an exponential dielectric decay function, the Debye relations 1124 

eqs. (2.127) and (2.128) plus any separate conductivity contribution 0 , is simulated by an 1125 

equivalent circuit comprising three parallel arms: a capacitance Cp, a series combination of 
sR  1126 

and sC , and a resistance 
pR . The relaxation part of the circuit is the series component s sR C , 1127 

the parallel resistance 
pR  corresponds to the separate conductivity, and the parallel capacitance 1128 

pC  simulates the limiting high frequency permittivity. If for a particular range of frequencies the 1129 

equivalent circuit of an experimental sample resembles s sR C  and the frequency range 1130 

encompasses  1/
s s

R C   then a dielectric loss peak will be observed in that frequency range. An 1131 

example is electrode polarization in a conducting medium that at low frequencies is approximated 1132 

by an electrode capacitance in series with the low frequency resistance of the sample. In this case 1133 

a dielectric loss is observed with a retardation time given by the product of the polarization 1134 

capacitance and sample resistance. Electrode polarization effects in solid electrolytes can often be 1135 

a serious problem; they were briefly discussed in §2.2.8.3 and are discussed in detail in §2.3.6.1 1136 

and §2.3.6.4 below. 1137 

In terms of the equivalent circuit the components of the complex permittivity are (see 1138 

Appendix 2.3) 1139 
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 1142 

and  1143 
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 1146 

that reproduce the Debye relations eqs. (2.127) and (2.128). The low and high frequency limits of 1147 

'  are 1148 
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and 1152 
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 1155 

Matlab®/GNUOctave codes for computing  *M i  and  * i   with the added Rp are given in 1156 
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Appendix 2.2. A notable result is that  *M i  exhibits two relaxations corresponding to the 1157 

Debye relaxation and an additional relaxation due to 0 . The Debye relaxation for  *M i  is 1158 

unaffected by Rp but the conductivity relaxation due to 0  is.  1159 

 As noted in §2.1 the occurrence of a dielectric and conductivity relaxation together raises 1160 

an important nomenclature issue that has produced much confusion: the subscripts for denoting 1161 

limiting low and high frequency limits can be ambiguous because these limits can refer to either 1162 

the average dielectric relaxation frequency or to the average conductivity relaxation frequency. In 1163 

particular, the quantity   that enters into the expression for the conductivity relaxation time, 1164 

0 0e /D   , is the high frequency limit for the conductivity relaxation, that may correspond 1165 

to the low frequency limit for a separate dielectric relaxation. A proposed nomenclature to resolve 1166 

this ambiguity was given above in §2.1 and has already been used in this section. 1167 

 1168 

2.3.5 Interfacial Polarization 1169 

In a homogeneous material 0
e 0   D E

r r r r
g g  implies 0 E

r r
g . At the interface between 1170 

two dielectric materials of different permittivity, however, there is a discontinuity in ε and 1171 

0 D
r r
g  no longer implies 0 E

r r
g . The solution to this problem is obtained by applying 1172 

Gauss’s and Stokes’ theorems to the interface with the result that the component of E
r

 tangential 1173 

to the interface is continuous across the interface and the normal component of D
r

 is either 1174 

continuous (no interfacial charge) or discontinuous if there is a free charge that is not the result of 1175 

polarization of the materials on each side of the interface. These boundary conditions make 1176 

macroscopic interfacial effects dependent on the geometry of the interface. 1177 

 Relaxation of interfacial polarization between alternating slabs of insulating dielectric and 1178 

conducting layers, generically referred to as a Maxwell Layered Dielectric, is characterized by a 1179 

single relaxation time i  given by 1180 
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 1183 

where Rl  is the thickness of the resistive layer with material resistivity ρ and Cl  is the thickness 1184 

of the capacitive layer with material permittivity ε. 1185 

 1186 

2.3.6 Maxwell-Wagner Polarization 1187 

 Relaxation of interfacial polarization between a conducting sphere embedded in a 1188 

dielectric continuum is known as Maxwell-Wagner (MW) polarization. Wagner [34] computed 1189 

the loss tangent  tan  for a volume fraction   of spheres of material conductivity 1  and 1190 

relative permittivity 1  suspended in a dielectric medium of relative permittivity 2 , that was then 1191 

generalized by Sillars [35] to suspensions of nonspherical particles. An excellent discussion of the 1192 

phenomenon is given in ref [3] from which much of the following is distilled. We also draw from 1193 

the paper by van Beek [36] who gave the Sillars formula and then considered the special case of 1194 

suspended spheres, and noted that the often cited Wagner formula is only correct when the 1195 
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permittivities of the suspended material and the dielectric medium are equal and that the Sillars 1196 

expression does not have this flaw. 1197 

 The Sillars expression for aspherical particles with aspect ratio a/b and a parallel to the 1198 

field direction is 1199 
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 1206 

where n is a function of the aspect ratio a/b. The limiting values for n are  1207 

 1208 

 
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 

  
  

    

:

      (2.161) 1209 

 1210 

Equation (2.161)(c) indicates that for needle-like particles oriented in the direction of the field the 1211 

value of n can be large – for example n ~ 50 for a = 10b. Because tan  is roughly proportional to 1212 

n
2
 [eqs. (2.159) and (2.160)a] the Maxwell-Wagner-Sillars effect can produce very large 1213 

dielectric losses. For spherical particles 1214 

 1215 
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         (2.162) 1216 

 1217 

and 0  is again given by eq. (2.160)d. The maximum value of tan  computed from eq. (2.159)d 1218 

is therefore 1219 

 1220 

 
2

max 1/2

2

tan
2 e e

K

K




 


  

.        (2.163) 1221 

 1222 

This expression is inconveniently complicated but simplifies when 0  : 1223 

 1224 

 
 

2
max

0
2 1

9
lim tan

2 2



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


.         (2.164) 1225 

 1226 

The components of the complex relative permittivity for the Maxwell-Wagner phenomenon for 1227 

this limiting case are conveniently expressed using three ancillary functions [36]: 1228 

 1229 

 1 2

2

2 1

3
1

2


  
 

 
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 1231 
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 1233 
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 1235 

Then  1236 

 1237 
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 1239 

and 1240 
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 1241 
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
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          (2.169) 1242 

 1243 

The maximum in the observed dielectric loss "

MW  is therefore 1244 

 1245 
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 1247 

that occurs at an angular frequency max  given by 1248 

 1249 

 
1

max

0 1 2

1/
e 2

MW


 

 
 


.         (2.171) 1250 

 1251 

At max  the value of '  from eq. (2.169) is 2
0

lim '


 


  that when combined with eq. (2.170)1252 

produces eq. (2.164). 1253 

 1254 

2.3.7 Examples 1255 

 Attention is restricted to the dielectric relaxation of water molecules in different 1256 

environments. 1257 

 1258 

2.3.7.1 Liquid Water 1259 

 Water is one of the few liquids that relaxes with a single retardation time (or very close to 1260 

it) and therefore has a Debye complex permittivity. Its dielectric relaxation frequency depends on 1261 

temperature but always lies within the microwave region of the em spectrum. This has important 1262 

implications for both navigational and meteorological radar and is of course the basis for 1263 

microwave cooking. The temperature dependence of the retardation time is not Arrhenius but 1264 

rather adheres to the empirical Fulcher equation (1.543) and (2.150), repeated here for 1265 

convenience: 1266 

 1267 

0

exp F
F

B
A

T T


 
  

 
,          (2.172) 1268 

 1269 

with parameters 131.25 10FA    s, 669FB   K, 0 138T   K that give a good description of  T  1270 

down to the limit of supercooling of bulk water, ca. 
0

35 C . The relaxation frequency  1/ 2   1271 

therefore varies between 62 GHz at 0
o
 C and 74 GHz at 100 

o
C and the energy absorption at 100 1272 

o
C is about 75% that at 0 

o
C. Microwave ovens generally operate at a frequency 2.45 GHz that 1273 

lies on the low frequency side of the Debye dielectric loss peak - the dielectric losses at this 1274 

frequency are about 4.0% and 3.3% of the maximum loss. The fact that the frequency of a 1275 
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microwave oven is on the lower side of the dielectric loss peak of water means that energy 1276 

absorption decreases with increasing temperature as the loss peak moves to higher frequencies, 1277 

thus preventing runaway heating. 1278 

 1279 

2.3.7.2 Supercooled Water 1280 

 Maxwell-Wagner polarization has been used to obtain the relative permittivity of 1281 

supercooled water down to about -35
0
C [37, 38]. The Maxwell-Wagner losses occur in the 1282 

frequency range 5 610 10  Hz that is far below the frequency range for the dielectric relaxation of 1283 

water (around 1110  Hz) so that the measured values for the relative permittivity correspond to the 1284 

limiting low frequency value 0 80 : . This range is also far above the relaxation frequency for 1285 

ice that is about 3.510  Hz at 0
o
C and decreases with decreasing temperature, so that if 1286 

crystallization occurred the relevant relative permittivity of ice is the limiting high frequency 1287 

value 5 : , far smaller than the limiting low frequency value 0 80 :  It is fortunate that the 1288 

Maxwell-Wagner losses occur at frequencies between the relaxation frequency ranges of water 1289 

and ice and do not overlap with either. 1290 

 Emulsions of water in heptane stabilized by the surfactant sorbitol tristearate [37] and 1291 

droplets suspended in beeswax [38] both exhibit Maxwell-Wagner polarization. In the first and 1292 

rigorous beeswax study by Hasted and Shahidi [38] volume fractions of 0.5% and 1.0% were 1293 

used. Hodge and Angell [37] later used a much larger volume fraction of water (30%) that was 1294 

necessitated by their much lower instrumental sensitivity. Their data were stated to be 1295 

inconsistent with the Maxwell-Wagner formulae because the observed values of max"  were 1296 

claimed to be about four times larger than predicted and their sign of    max 1" / /d dT d dT   was 1297 

positive rather than negative as predicted by their eq. (3). However their eq. (3) is incorrect – the 1298 

numerator term 2

2  of eq. (2.170) was given as 2

1  so that the analyses of *

MW  given in [1] and 1299 

[37] are both incorrect. Equation (2.170) predicts that max"  is indeed inversely proportional to 1  1300 

if 1 2 ?  (a good approximation for water droplets in hexane). The analyses in terms of the 1301 

electric modulus [1,37] are unaffected by this mistake and remain valid although the stated 1302 

requirement that a series capacitance that simulates the surfactant layer around the droplet needs 1303 

to be large for the modulus analysis to be useful [1] is not correct (see eq. (2.107) above). 1304 

 The observed maxima in "  decreased with decreasing temperature that is consistent with 1305 

eq. (2.170), but for 1 2100 2  ?  and 0.3   the predicted value is about 1306 

     "

max 9 0.3 (4) / [2 106 ] 0.005   , compared with the experimental values that range 1307 

between about 0.4 – 0.8. The observed value is therefore too large by a factor of about 100. Also, 1308 

the measured ratio of max"  at the temperature extremes of 0
o
C and -35

o
C is about 1.8 compared 1309 

with the correct value of about 1.2. The observed values of max  for "  were centered 1310 

around  6 72 5.5 10 3.5 10 rad/sHz     from which eq. (2.171) predicts a conductivity of about 1311 

     1 0 1 2 1 2 maxe 2 / 1                 12 79 10 F/m 230 3.5 10 / 0.7  1312 

   12 79 10 F/m 230 3.5 10 / 0.7 0.1 S/m    , that is impossibly high. 1313 

 The measured modulus peak heights also decreased with decreasing temperature and since 1314 
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max"M  is assumed to be inversely proportional to the permittivity this trend is also in the correct 1315 

direction. Values of 1  for water were then derived by assuming that max 1" 1/ ,M   fixing the 1316 

proportionality constant from literature data for 1  at 0 
0
C and then least squares fitting a 1317 

quadratic in temperature to eight data points between 0
0
C and 35  

0
C. Agreement with the earlier 1318 

results, of which the authors were unaware at the time of paper submission (see Note added in 1319 

Proof in [37]), was within the ±2% uncertainties claimed for each method but the agreement is 1320 

better than this because most of the discrepancies are systematic due to the different values of 1  1321 

at 0
o
C for the two methods (measured in [38] but chosen from the literature as a proportionality 1322 

constant in [37]). When this is corrected for by equating the average of the modulus derived 1323 

permittivities to the average from reference [38] the differences are reduced to 0.5% or less. This 1324 

is a remarkable result given the simplifications used in the modulus analysis. 1325 

 These Maxwell-Wagner results can be rationalized in terms of a simplified equivalent 1326 

circuit for the emulsified water droplets: a parallel (R1C1) element (corresponding to the water 1327 

droplet with relative permittivity 1  and conductivity 1 ) is in series with a capacitance Cs that 1328 

simulates the suspected thin layer of emulsifier, and a capacitance C2 in parallel with the series 1329 

combination to simulate the surrounding heptane. Intuitively C2 is much smaller than C1 from 1330 

both geometrical and physical considerations  2 1 = . The circuit analysis is: 1331 

(i) Admittance A1 of parallel (R1C1) element: 1332 

    1 1 1 1 1 1 1 11/ 1 / 1 /A R i C i R C R i R         so that 1333 

 1334 

 1 1 1/ 1Z R i  .          (2.173) 1335 

 1336 
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 1340 

(iii) Admittance 1 2sA  of complete circuit: 1341 
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 
.       (2.175) 1344 

 1345 

(iv) For 2 1C C=  appropriate for water droplets in heptane the total admittance simplifies to 1346 

 1347 
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 1349 

Thus 1350 

 1351 
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 1353 

so that 1354 

 1355 
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
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 1357 

The maximum value  1 / 2sC C  for C" is therefore determined in part by the surfactant layer 1358 

and is greater than the value C1/2 for no series capacitance. This is consistent with the observed 1359 

maxima in ε" [37] being about 100 times greater than that calculated from the Maxwell-Wagner 1360 

expression. The maximum in C" also occurs at  max 11/ sR C   that is also determined in part by 1361 

the surfactant layer and therefore would give an incorrect value for the conductivity of water. This 1362 

dependency of the relaxation time on Cs can also account for the (unreported) fact that changing 1363 

the suspending medium changed max  [37] since the suspending medium would be expected to 1364 

affect the surfactant layer and Cs. 1365 

 The imaginary component of the electric modulus for the same circuit when 2 1C C=  is 1366 

 1367 

   
1 1 1

2 2 2 2 2 2
11 1 1 1

1
"

1 1

i R i R C
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Ci R C i R C

 

 
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  
,       (2.179) 1368 

 1369 

the maximum value of which is  11/ 2C  and therefore contains the desired information about C1 1370 

that is independent of Cs. The frequency of maximum M" is  max 1 11/ R C   and is also 1371 

independent of Cs. 1372 

 Matlab® and GNUOctave calculations of the relaxation functions for the circuit enable 1373 

values of the circuit elements to be quickly estimated that produce trends that are generally 1374 

consistent with the experimental data, with the notable exception of the maximum values of ε" 1375 

(discussed briefly below). For example good agreement with the experimental trends is attained 1376 

with 3

1 10 ;R    3

1 10 F;C   5

2 10 F;C   45 10 FsC   . The value of 100 for the ratio C1/C2 1377 

was chosen to approximate the ratio of permittivities of water and hexane and to accommodate an 1378 

unknown geometric factor for the suspending medium relative to the droplet, and the value of sC  1379 
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was found from the experimental ratio of 0.5 for the frequencies of maximum "  and M" (the 1380 

latter being higher). The geometric factor is probably the largest source of uncertainty in 1381 

estimating the values of the circuit parameters. 1382 

 The Maxwell-Wagner equivalent circuit discussed here is obviously crude but serves to 1383 

rationalize the remarkable success of the electric modulus in analyzing the Maxwell-Wagner 1384 

effect for water droplets in a dielectric medium of low permittivity. 1385 

 1386 

2.3.7.3 Hydration Water 1387 

 Water of ionic hydration is readily probed by dielectric relaxation if the ionic conductivity 1388 

contribution to "  and tan  is sufficiently small, such as often occurs in hydrate glasses. Data for 1389 

 3 2
Ca NO  hydrate glasses [39] provide a convenient illustration of how water in different 1390 

molecular environments can be distinguished dielectrically. Spectra of dielectric tan  vs. 1/T at 1391 

1 Hz were shown for eight glasses of composition  3 22
Ca NO . H OR  (R = 3, 4, 5, 6, 8, 10, 12, 1392 

14). Glasses with lower R values required the addition of 3KNO  to ensure glass formation but this 1393 

was expected to have only a minor effect on water dynamics because water was expected to be 1394 

much more strongly bound to 2Ca   because of its larger ionic charge/radius compared with K . 1395 

Four relaxations were observed labeled as α, β, γ, δ: 1396 

   A conductivity relaxation at low 1/ T  corresponding to the onset of conductivity at glass 1397 

transition was manifested as a steep increase in tan . The relaxation temperature corresponds to 1398 

tan 1   and will be referred to here as the "conductivity wing". It is essential that this relaxation 1399 

occur at sufficiently high T in order that the other relaxations occur in the poorly conducting 1400 

glassy state and not be hidden beneath the conductivity contribution to tan . 1401 

   A dielectric relaxation lying close to the conductivity wing whose shift in position with R 1402 

paralleled that of the conductivity relaxation. It was observable only as a shoulder for 1 6R    1403 

and (probably) R = 10 but is seen as a distinct peak for R   trace. 1404 

   A weak low temperature dielectric relaxation  3 2

maxtan 10 10     was observed as a 1405 

broad maximum for R = 4, 5, 6 and as a shoulder for 8.R   1406 

   A dielectric relaxation whose intensity increased rapidly with R. It was probably a part of 1407 

the broad maximum near 310 / 7.5T   for R = 8 but appeared as a clear maximum for 10R  . 1408 

 The β relaxation was assigned to cation bound water that for the reason given above 1409 

probably coordinates Ca
+
 rather than K

+
. The rapid shift in relaxation temperature with R > 1 was 1410 

interpreted as a change in water dynamics as H2O replaces 3NO  in the first coordination shell of 1411 

Ca
+
. The R - invariance for R = trace and R = 1 was attributed to a single water molecule lying in 1412 

the first coordination shell. This assignment of the   relaxation to 2Ca   bound water implied a 1413 

dielectric activity that merits discussion. The most plausible geometry for H2O coordinated to Ca
+
 1414 

is when the H2O dipole points away from the Ca+ ion. However if this held in the complex ionic 1415 

environment of the glass there would be no dielectric activity because the rotational axis would 1416 

bisect the H-O-H  angle and coincide with the dipole vector. Two alternatives suggest themselves: 1417 

(1) Exchange of water and nitrate in the coordination shell. This implies an associated volume 1418 

fluctuation and ultrasonic activity. Such activity has been observed [40,41] in 3 2 2Ca(NO ) RH O  1419 
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solutions at about 20 MHz at room temperature. This relaxation moved to higher frequencies with 1420 

increasing R and the edge of a second relaxation at higher frequencies was noted, both being 1421 

consistent with the glassy state dielectric behavior. Such an exchange would also be expected to 1422 

contribute to the translational ionic migration that produces conductivity, consistent with the 1423 

essentially R – invariant difference between the   and   relaxation temperatures. The 1424 

possibility that this relaxation is part of a conductivity relaxation with a distribution of relaxation 1425 

times is discussed in §2.5.  1426 

(2) A different +

2Ca -OH  geometry in which the dipole vector and rotation axis do not 1427 

coincide. Neutron diffraction data indicate this occurs in 2CaCl  and 2NiCl  solutions [42], in 1428 

which an angle of ca. 40
o
 was observed between the dipole and coordination axes at R = 12.6 1429 

 2NiCl  and 12.3  2CaCl , and about 0
o
 in dilute solutions  450R  . It was not possible to find 1430 

the dielectric activity per water molecule of the β relaxation in the 3 2 2Ca(NO ) RH O  glasses 1431 

because of overlap with the conductivity wing and the γ relaxation, but for the mixed nitrate 1432 

glasses the well defined conductivity wing for the anhydrous mixture could be shifted and 1433 

subtracted to yield plausibly shaped peaks of tan  vs. 1/ T . The peak heights and widths in the R 1434 

= 1 and R = 3 glasses were about the same so that barring an unlikely ratio of activation energies 1435 

in excess of 3 it appears that the dielectric activity per water molecule does indeed decrease with 1436 

increasing R. A crude calculation yielded sensible values of   from the observed values of 1437 

maxtan : the dipole being relaxed was assumed to be the component of the water dipole  W  1438 

orthogonal to the rotation axis, magnitude  sinW  , and maxtan  was assumed to be 1439 

proportional to  0   that is in turn proportional to  
2

sinWR     . Equating maxtan  for 1440 

the 1R and 3R glasses then yielded 1441 

 1442 

   2 2

3 1

3 1

3 1
sin sinR R

R RT T
    ,        (2.180) 1443 

 1444 

so that  1445 

 1446 

   2 2

3 1sin 0.286sinR R    .        (2.181) 1447 

 1448 

Examples of  1 3,R R    pairs were  0 060 ,28  and  0 030 ,15 , both sensible values and roughly 1449 

comparable with the neutron diffraction values. 1450 

 For large values of R the   relaxation was expected to resemble that of pure water so that 1451 

an extrapolation to infinite dilution could yield the temperature at which the relaxation frequency 1452 

of water is 1 Hz. The retardation temperatures at 1 Hz for the   relaxation in four glasses 1453 

(Ca(NO3)2, CaZnCl4, Li2ZnCl4 and ZnCl2 hydrates) all extrapolated to 162 5  K at infinite 1454 

dilution, suggesting that the relaxation temperature for pure water would be 162 5  K at 1Hz. 1455 

The temperature dependence of the relaxation time for water between -20
o
C to +30

o
C [43] was 1456 

found to follow the Fulcher equation 1457 

 1458 



Page 44 of 61 

 

  

 
0

exp F
F

B
T A

T T
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 
  
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          (2.182) 1459 

 1460 

with 131.25 10FA   s, 669KFB  , 0 138T   K. The extrapolated {1 Hz, 162 5  K} datum 1461 

agreed with the predicted Fulcher value {1 Hz, 162 K}. Given the large extrapolation over about 1462 

11 orders of magnitude (!) this agreement constitutes good evidence that dielectric relaxation of 1463 

water outside the first coordination shell of the Ca
2+

 and Li
+
 cations is the same as pure water. 1464 

This was supported by a similar extrapolation of LiCl in glycerol data that yielded a relaxation 1465 

temperature equal to the directly observable value for pure glycerol at 1 Hz. 1466 

 1467 

2.4 Conductivity Relaxation 1468 

2.4.1 General Aspects 1469 

 As noted earlier relaxation of polarization can occur either by translation of electric charge 1470 

(electric current), or by dipole rotation/localized ion hopping (displacement current). Thus 1471 

polarization induced by an electric field can occur by conductivity relaxation [44] arising from 1472 

long range translational migration of point charges as well as by the dielectric relaxation 1473 

considered so far. The time scale associated with a frequency invariant conductivity 0  is defined 1474 

by (eq. 1.42) 1475 

 1476 

0 0/ eD   ,          (2.183) 1477 

 1478 

but this is not evident in '  vs ln  plots nor is it for the function 0 0* ' / ei     . However 1479 

"  and M" clearly indicate the time scale because they exhibit maxima in the frequency domain 1480 

at 1/ D  . The time constant D  in eq. (2.183) differs from the characteristic time e  in the 1481 

Fermi gas expression for electronic conductivity in metals that is directly proportional to 0  [45]: 1482 

 1483 

02e

m

ne
  ,           (2.184) 1484 

 1485 

where n is the number density of charge carriers of effective mass m and charge e. The reason for 1486 

the difference is that e  is the average time of travel between scattering events (collisions with 1487 

ions, electrons, phonons or by umklapp), whereas D  is the residence time between (effectively 1488 

instantaneous) jumps between adjacent sites. Nor is D  equal to E  for dielectric relaxation, 1489 

although they are related by an expression that is derived below. 1490 

Equation (2.183) implies that ionic conductivity cannot exceed ca. 3 -110  Sm , since D  1491 

cannot reasonably be less than a vibrational lifetime v  and   is rarely greater than about 10. 1492 

The vibrational lifetime is conveniently defined by the condition for critical damping (§1.11), 1493 

0 1v   , so that for a typical vibrational frequency of about 
12 1210 Hz 6 10 rad/sf      the 1494 
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value of v  is about 132 10 s  and 1495 

 1496 

  12

0
0,max 13

8.854 10  F/m 10
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e 











  


,      (2.185) 1497 

 1498 

comparable with the highest conductivity observed for ionic conductors. 1499 

 The properties of the four basic functions for conductivity relaxation (eq. (2.106)) are 1500 

conveniently illustrated using a circuit comprising three elements in series: (i) a capacitance 1501 
610 F 1 FsC   ; (ii) a parallel combination of a resistance 8

1 10R    and capacitance 1502 

12

1 10 F(1pF)C   (iii) another parallel combination of a resistance 6

2 10R    and capacitance 1503 

12

1 10 F(1pF)C  . The two parallel Rp-Cp elements could for example simulate crystal and inter-1504 

crystal impedances in a polycrystalline samples and the series capacitance Cs could simulate 1505 

electrode polarization. As discussed below this circuit has been used by several groups and will 1506 

be referred to as the "ideal" conductivity circuit. 1507 

 The electric modulus * ' "M M i M   is particularly useful for analyzing conductivity 1508 

relaxation but it is controversial (a discussion of many of the issues is given in [1]). It was 1509 

probably first defined by McCrum, Read and Williams [32], but its use in analyzing conductivity 1510 

relaxation was initiated by Macedo and coworkers [44]. The usefulness of M* is illustrated by the 1511 

simplest case of a constant conductivity 0  and constant relative permittivity   (the reason for 1512 

the subscripts will become clear when distribution functions are considered later). Consider the 1513 

definitions 1514 

 1515 

2 2

2 2

'
' (a),

' "

"
" (b).

' "

M

M



 



 







         (2.186) 1516 

 1517 

Insertion of the relations 0 0" / e    and '   then yields 1518 

 1519 
2 2

2 2

1
'

1

D

D

D

M
 

  

 
  

 
          (2.187) 1520 

 1521 

and 1522 

 1523 

2 2

1
"

1

D

D

D

M


  

 
  

 
.          (2.188) 1524 

 1525 

Thus M" exhibits a desirable peak centered at ωD=1/τD as a function of  ln  . The components 1526 

of the complex resistivity *  are related to those of M* by (eq. (2.106)) 1527 

 1528 
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 1530 

and 1531 

 1532 
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     

    
,      (2.190) 1533 

 1534 

where 
0 0 01/ / e D

D     . The functions M" and "  have identical frequency dependencies 1535 

but are weighted by 1/ε∞ and ρ0 respectively. The difference in weighting factors can be exploited 1536 

to considerable advantage in the analysis of ac conductivity data (§2.3.5.6 - §2.3.5.8). 1537 

 For dielectric relaxation M* and *  are almost equivalent because a Debye peak in "  1538 

also yields a Debye peak in M" [44] [see eqs. (2.132) and (2.133)]. The derivation of M* for a 1539 

Debye dielectric without any conductivity is given in Appendix 2.1. It might appear that a peak in 1540 

M" could be due to either a conductivity or dielectric process and that M* could not distinguish 1541 

between them but this is not necessarily so because the average relaxation time D  will be 1542 

calculable from the limiting low frequency conductivity [eq. (2.73)] if the process is a 1543 

conductivity relaxation, and the retardation time will not correlate with 0 .if the peak in M" is 1544 

due to a dielectric relaxation Also   0
0

lim ' 1/M


 


  for dielectric relaxation compared with 1545 

 
0

lim ' 0conductivityM





  for conductivity relaxation. The archetypal example of dielectric 1546 

relaxation being correlated with 0  occurs in the alkali silicate glasses and it was this correlation 1547 

that originally led to the inference that the residual dielectric loss (after subtraction of 0 0/ e  ) is 1548 

due to the same alkali migration process that produces 0  [27-31]. This led Macedo and 1549 

collaborators [44] to first use M* in the analysis of conductivity relaxation.  1550 

 The low frequency conductivity relaxation limit for M ' is revealing because M ' is a 1551 

measure of the restoring force in response to an electric field perturbation. The low frequency 1552 

limit of this restoring force is finite for dielectric relaxation because the charge storage ability 1553 

remains nonzero:   0lim '


  


 . For conductivity relaxation the dielectric loss becomes infinite 1554 

as 0  (dissipation completely overrides any storage capability) and the restoring force is 1555 

“short circuited”. This is precisely analogous to the mechanical modulus going to zero as the 1556 

viscosity of a viscoelastic material dominates at low frequency and the elasticity disappears. The 1557 

electric modulus was first introduced to emphasize this mechanical analogy [32]. 1558 

 An alternative to the electric modulus for analyzing materials in which the dielectric loss 1559 

and conductivity are correlated has been proposed by Johari [46]. This proposal is similar in style 1560 

to a mechanism for ionic conductivity proposed by Hodge and Angell [47] that was based on the 1561 

one-dimensional Glarum diffusion model for dielectric relaxation [§1.12.6, Chapter One]. The 1562 

Glarum model comprises a relaxing dipole that can relax either independently with retardation 1563 

time 0  or by the arrival of a defect of some kind that relaxes it instantly. Hodge and Angell 1564 

suggested that the dipole is a trapped ion/vacancy pair (known to exhibit Debye dielectric 1565 
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behavior, §2.3.1.2) and that the defects are itinerant ions that contribute to 0 . Such diffusing 1566 

ions would eliminate the dipole upon arriving by inserting themselves into the vacancy, consistent 1567 

with the Glarum model. The average activation energy for oscillation of trapped ions and that for 1568 

ion migration are presumed to be similar (perhaps identical), thus accounting for the nearly 1569 

temperature invariant distribution of conductivity relaxation times. The Glarum function is 1570 

mathematically similar to the Davidson-Cole function that has a (rarely observed) Debye-like low 1571 

frequency loss. This low frequency behavior arises from the Glarum assumption that the dipole 1572 

has just one retardation time. However if a distribution of dipole retardation times is assumed, 1573 

corresponding to a distribution of sites in an amorphous material and/or local fields effects 1574 

(§2.3.1.2) for example, better agreement with experiment might be obtained without changing the 1575 

essential physics of the Glarum model. 1576 

 1577 

2.4.2 Distribution of Conductivity Relaxation Times 1578 

 Both M* and *  can be formally described in terms of a distribution of conductivity 1579 

relaxation times: 1580 

 1581 
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      (2.191) 1582 

 1583 

and similarly for  * i  . A distribution of conductivity relaxation times affects the dispersion 1584 

of the corresponding complex admittance functions  * i   and  * i  : 1585 

 1586 
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 1589 

and 1590 

 1591 
2
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
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
   .          (2.194) 1592 

 1593 

 A distribution of conductivity relaxation times is not easily distinguishable from dielectric 1594 

and conductivity relaxations occurring together [36,44], although the dielectric relaxation will not 1595 

be observable if E D ?  because 0  will then exceed the limiting high frequency dielectric 1596 

conductivity given by eq. (2.131): 1597 

 1598 
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 1600 

This phenomenon has been directly observed in systems for which the dielectric retardation time 1601 

is essentially constant but whose conductivity is increased by addition of electrolyte [48, 49] (also 1602 

see §2.3.6.9 below). 1603 

 1604 

2.4.3 Constant Phase Element Analysis 1605 

 It is sometimes useful to have a circuit element for which the phase angle is independent 1606 

of  , 1607 

 1608 

   * exp
2

i
W i W


 

 
  

 
,        (2.196) 1609 

 1610 

where  W   is any real function and 0 1   is also real (the positive sign in the exponent 1611 

corresponds to an admittance and the negative sign to an impedance). However as noted in 1612 

Chapter One and §2.4.3 eq. (2.196) can only be valid over a restricted frequency range because 1613 

otherwise the underlying distribution of relaxation/retardation times cannot be normalized. 1614 

Equation (2.196) is a generalization of the Warburg impedance for which 0.5  . 1615 

 1616 

2.4.4 Estimation of 0  1617 

 Several methods have been published for estimating 0  in situations where it has been 1618 

contaminated by such factors as electrode polarization and intergranular impedances. An accurate 1619 

value for 0  is often important because, in addition to the obvious need for reliable data, its 1620 

contribution to "  must be subtracted for permittivity analyses (the attendant difficulties have 1621 

been discussed by Ravaine and Souquet [52, 53]). Accurate values of 0  are also needed in order 1622 

to determine reliable activation energies for conductivity. For example if  log   measured at 1623 

constant measuring frequency meas  is plotted against 1/ T in the usual Arrhenius fashion then 1624 

spurious changes in slope can result from both electrode polarization and bulk relaxation effects. 1625 

(1) If the measuring frequency meas  is so low that polarization is significant then the 1626 

measured conductivity will be less than 0 , by an amount that increases with increasing 1627 

temperature because of the shift to higher frequencies of the polarization '  spectrum (which has 1628 

essentially the same effective activation energy as the sample conductivity).  1629 

(2) A fictitiously low activation energy is then obtained at high temperatures as meas  probes 1630 

deeper into the polarization relaxation. A spuriously low activation energy can also occur at low 1631 

temperatures when meas  lies within the bulk relaxation frequency range where '  is often 1632 

observed to increase as  1   . In this case the measured conductivity will exceed 0  by an 1633 

amount that decreases with increasing temperature and the measured activation energy will be 1634 

smaller than the true value by the factor ln '/ lnd d   : 1635 
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 1636 

 , , 1a obs a trueE E   .          (2.197) 1637 

 1638 

In cases where 1  , as occurs in some electronic semiconductors [48], the fixed frequency 1639 

conductivity is therefore almost independent of temperature in the bulk relaxation temperature 1640 

region. 1641 

 1642 

2.4.4.1 Analyses in the Complex Resistivity Plane 1643 

 Ravaine and Souquet [52,53] used the complex resistivity plane for determining 0  of 1644 

alkali silicate glasses in the presence of electrode polarization using low frequency extrapolations 1645 

to the real axis. They fitted the high frequency spectrum (i.e. sample relaxation) to the Cole-Cole 1646 

[54] function (§1.12.5) and extrapolated the Cole-Cole semicircle to the real axis. For severe 1647 

polarization Armstrong et al. [55-59] used a similar method based on extrapolation of the high 1648 

frequency polarization spike to the real axis. This method is restricted to high conductivities 1649 

whose relaxation frequency lies above the measuring frequency range.  1650 

 1651 

2.4.4.2 Modulus and Resistivity Spectra 1652 

 In cases where electrode polarization and conductivity relaxations overlap significantly 1653 

and no plateau in '  is observed, 0  can be estimated from eq. (2.183) if D  and   are known. 1654 

These can sometimes be determined with sufficient precision by fitting  "M   to an appropriate 1655 

empirical function because M" is insensitive to high capacitance effects such as electrode 1656 

polarization and intergranular impedances so that only the bulk relaxation is included in the fitted 1657 

function. For this application the fit to M" should preferably be weighted by the lower frequency 1658 

data because these reflect the longer relaxation time components of the distribution that contribute 1659 

more significantly to D . The maximum in " , 
"

max
 , can also be used to estimate 0  to within 1660 

about 10% if the full width at half height of the peak in "  (  decades) can be determined: 1661 

 1662 
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.          (2.198) 1663 

 1664 

If only the maximum in "  at max  is observable 0  can still be estimated from the value of '  1665 

at max  by assuming  " ln   to be symmetric: 1666 

 1667 

 
0

max

1

2 '


 
 .          (2.199) 1668 

 1669 

2.4.4.3 Complex Admittance Plane 1670 

One of the first applications of complex plane plots was to polycrystalline yttria-zirconia 1671 

electrolytes by Bauerle [60]. Bauerle gave an excellent discussion of equivalent circuits and their 1672 

corresponding complex admittance plane plots, but the only circuit used in their data analysis was 1673 
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a series combination of two parallel RpCp elements and a series resistance Rs. The first parallel 1674 

RpCp element in this circuit represented the electrode interface: the capacitance of a double layer 1675 

in parallel with the resistance of an oxygen gas-oxide ion charge transfer process. The second 1676 

RpCp element represented an intergranular boundary (“constriction”) impedance, and the pure 1677 

resistance simulated the bulk crystal. The experimentally observed complex admittance plane 1678 

plots were in excellent agreement with the equivalent circuit predictions. The zero frequency 1679 

conductivity predicted from the complex plane plot was also in excellent agreement with four 1680 

terminal data, and the expected dependence of the electrode impedance on oxygen partial pressure 1681 

was observed. Despite these successes, some disadvantages of the method should be pointed out. 1682 

First, in assuming that the bulk crystal acts as a pure resistance the analysis implicitly assumes 1683 

that the measuring frequencies are well below the conductivity relaxation frequency, that can only 1684 

be confirmed retrospectively. Second, although there are three relaxing elements (since the 1685 

sample resistance must realistically have a capacitance in parallel with it), the complex admittance 1686 

plane exhibits only two arcs that reflect the differences between the relaxing elements. If the 1687 

observed relaxations overlap significantly, an assumption must be made about the shapes of the 1688 

two relaxations before extrapolations are made, i.e. a functional form for the extrapolating 1689 

function must be chosen. Bauerle’s data were well described by the Cole-Cole function but this 1690 

would not be expected to occur in general. 1691 

 1692 

2.4.5 Examples 1693 

2.4.5.1 Electrode Polarization and Bulk Relaxation in the Frequency Domain 1694 

 Consider an "ideal" equivalent circuit similar to that used by Bauerle except that the series 1695 

resistance is replaced by a series capacitance, with specific values of the parallel RpCp elements 1696 

being 
8 11 -3

1 1 1 1 110 , 10 F = =10 sR C R C      , 
6 11 -5

2 2 2 2 210 , 10 F = =10 sR C R C       1697 

and 
610 FsC    . The distribution of conductivity relaxation times then comprises two delta 1698 

functions at 3

1 10  s and 5

2 10  s. The shorter relaxation time element simulates the crystal 1699 

impedance in a polycrystalline preparation, the longer relaxation time element simulates an 1700 

intergranular impedance, and the series capacitance simulates electrode polarization. This circuit 1701 

has been found to be useful in analyzing the electric response of a variety of conducting materials, 1702 

including a superionic conductor [61], an electronic semiconductor [62], and a normal ionic 1703 

conductor [9]. The relaxation time averages are 1704 

 1705 
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 1709 

The high frequency relative permittivity is (assuming k = 1 for convenience so that 0 0eC   1710 

numerically) 1711 

 1712 
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 1714 

and the low frequency relative permittivity is 1715 
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 1718 

The limiting low and high frequency conductivities are 1719 

 1720 

  

 

12

7 -10
0 5

8.854 10 5.647
9.9 10 S m

5.05 10D

є 











   


     (2.205) 1721 

   12 5 5 1

0 1/ 8.854 10 5.647 5.05 10 2.53 10 SmDє      
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 1723 

(1)  The "  and M" spectra both exhibit two peaks the heights of which reflect the different 1724 

weighting of the two functions - eqs. (2.188) and (2.190). The two "  peak heights differ by the 1725 

ratio of the resistances 8 6 210 /10 10 , whereas the M" peaks are equal in height because the two 1726 

capacitances are equal. If the capacitances were different and the resistances the same then the 1727 

peaks in "  would have the same height and those in M" would differ. Also "  increases 1728 

indefinitely at low frequencies due to Cs whereas M" is unaffected. 1729 

(2) After subtraction of the contribution of 0  to " , and of the limiting high frequency 1730 

contribution of   to " , both "  and "  exhibit a single peak at a frequency between the two 1731 

maxima exhibited in the M" and "  spectra. These single peaks in the admittance functions occur 1732 

because at intermediate frequencies the high frequency RC  element behaves as a resistance and 1733 

the low frequency RC element behaves as a capacitance. As noted in §2.2.4 the effectively series 1734 

RC circuit will produce just a single loss peak in the admittance. For the electrode polarization 1735 

relaxation caused by Cs in series with the sample resistance  1 2R R  peaks in 0" e    and 1736 

0 0" / e    are observed at lower frequencies. 1737 

(3) A low frequency decrease in '  and increases in '  and "  are found that are due to the 1738 

electrode polarization simulated by Cs. For expositional clarity the value of Cs was chosen to 1739 

ensure a clean separation between the simulated polarization and bulk relaxations but this does 1740 

not occur in typical experimental data. 1741 

(4) The complex plane plots have both advantages and disadvantages compared with the 1742 

spectra. Two disadvantages are the inconvenience of locating the frequencies of maximum loss, 1743 

and of comparing these frequencies in M* and *  plots because of the opposite directions of 1744 

increasing frequency. On the other hand, complex plane plots are useful for extrapolations. For 1745 

example in highly conducting materials whose conductivity relaxation frequency 1/ D  lies 1746 

above the measuring frequency, and for which electrode polarization is significant or even severe, 1747 
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the polarization spike in the *  plane can be extrapolated to the real axis to give an estimate of 1748 

0 01/  . At frequencies above the conductivity relaxation frequency, 0  is manifested as a 1749 

spike in the *  plane, corresponding to the limiting values of 
0 0

0 0
lim " lim / є
 

  
 

   and 1750 

0
0

lim '


 


 . 1751 

 1752 

 1753 

2.4.5.2 Conductivity Relaxation in Sodium  Alumina 1754 

Permittivity, modulus and resistivity spectra of single crystal sodium  -alumina at 113 K 1755 

have been reported by Grant and Ingram [64,65]: 1756 

(i) the "  spectrum measured in the direction perpendicular to the conduction planes; 1757 

(ii) the M" spectra in orientations perpendicular and parallel to the conducting planes; 1758 

(iii)  the Z" spectrum measured in the direction of the conduction planes.  1759 

 The frequency of maximum Z" in the parallel orientation was close to the frequency of 1760 

maxima in M" and "  measured in the perpendicular orientation, and the activation energy for the 1761 

parallel resistivity spectrum was close to that for the perpendicular dielectric loss spectrum. The 1762 

data for the perpendicular orientation were interpreted in terms of a Maxwell layered dielectric 1763 

[65], with each insulating spinel block being a capacitance and each conduction plane a 1764 

resistance. The activation energy for the dielectric loss was thus determined by that of the 1765 

conductivity of the conducting layers, that the data suggest is similar in directions parallel and 1766 

perpendicular to the conduction planes. An extraordinarily large width of the M" spectrum for 1767 

single crystal Na   alumina was observed in the parallel orientation [66,67], indicating a very 1768 

broad distribution of conductivity relaxation times: the resistivity and modulus spectra taken 1769 

together suggested that the distribution was bimodal. Grant and Ingram proposed that at 113 K the 1770 

low frequency conductivity is determined by an activated localized ion motion that is the same in 1771 

both orientations. The higher frequency conductivity, which contributed to M" but not to " , 1772 

resulted from a relatively free motion of ions crossing low energy barriers. These processes were 1773 

consistent with low temperature localization of sodium ions deduced from NMR data [68]. 1774 

Localized activation is not the rate determining step at high temperatures and the well-established 1775 

low activation energy for conductivity in sodium  -alumina was observed. Spectra of M" and Z" 1776 

for a representative polycrystalline specimen at 113 K were also reorted. The Z" spectrum was 1777 

uninformative at this temperature, increasing monotonically at low frequencies due to electrode 1778 

polarization. The M" spectrum exhibited a maximum at about the same frequency as the single 1779 

crystal M" spectrum observed perpendicular to the conduction planes, and a reproducible shoulder 1780 

was observed at about the same frequency as M" observed parallel to the conduction planes in 1781 

single crystals.  1782 

This work demonstrates that comparison of the functions M", "  and "  can uncover 1783 

details of the conductivity behavior of sodium   alumina that could not even be discussed if 1784 

only *  and *  data were used. 1785 

 1786 

2.4.5.3 Complex Impedance Plane Analysis of Electrode Polarization in Sintered    1787 

Alumina. 1788 

 The use of the complex impedance plane for extrapolating polarization phenomena to 1789 
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obtain data on the bulk material was used extensively by Armstrong and coworkers in their 1790 

studies of superionic conductors such as Na  -alumina [55] and Ag-Rb iodide [54-58]. A spike 1791 

in the complex impedance plane corresponds to the low frequency increase in Z" due to the series 1792 

electrode capacitance and extrapolation of this spike to the real axis yielded the limiting low 1793 

frequency values of 'Z  and therefore of 0 . Different surface preparations were observed to 1794 

affect the measured impedance but all of the extrapolations gave the same values for 0 . This 1795 

method is clearly most appropriate for very highly conducting materials whose conductivity 1796 

relaxation lies at frequencies well above those used experimentally. 1797 

 1798 

2.4.5.4 Complex Impedance Plane Analysis of Atmosphere Dependent Electrode Effects in KHF2 1799 

 Complex impedance plane analysis was also used by Bruinink and Broers [69] for the α 1800 

and β phases of KHF2. In an atmosphere of hydrogen with platinum paint electrodes, the complex 1801 

impedance plane plot of data for  -KHF2 was consistent with a Warburg impedance in parallel 1802 

with the bulk resistance and capacitance [69], and extrapolation to the real axis gave a value of 1803 

0  in agreement with a separately determined four terminal dc value. This plot gave no indication 1804 

of interfacial polarization, consistent with  -KHF2 being a proton conductor and the platinum 1805 

paint electrodes behaving as reversible hydrogen electrodes. This contrasted sharply with the low 1806 

frequency behavior of  -KHF2 in a vacuum, where a double layer capacitance of about 440 mF 1807 

m
-2

 per electrode in parallel with a Faradaic resistance of about 
42 10 m   per electrode 1808 

produced an additional semicircle in the complex plane. For the polycrystalline β-phase the 1809 

complex plane plot was essentially unchanged for data taken in both a hydrogen atmosphere and a 1810 

vacuum [69] and is consistent with a Warburg impedance in series with a parallel RC element, 1811 

corresponding to electrode polarization due to blocking of +K  and/or F  charge carriers. An RC  1812 

transmission line was used to rationalize the Warburg impedance in terms of bulk electrical 1813 

relaxation. 1814 

 1815 

2.4.5.5 Intergranular Effects in Polycrystalline Electrolytes 1816 

 The effects of intergranular material on the overall electrical response of polycrystalline 1817 

electrolytes have been extensively documented. Only one example is discussed here [9,66]. The 1818 

simplest equivalent circuit representation of such materials comprises two parallel RC  elements 1819 

in series, where one element is associated with a crystallite and the other with intergranular 1820 

material. Armstrong et al. [70] showed that such a series circuit can represent the principle 1821 

features of polycrystalline electrolytes. Since the interface is thin and the permittivities of ionic 1822 

solids typically vary by a factor of less than 10, the capacitance Ci associated with the interface is 1823 

much higher than that of the grain Cp: 1824 

 1825 

0
0

'
'i

i p

i

є
є

A
C k C

d


            (2.207) 1826 

 1827 

where Ai is the average cross section area, di is the average thickness of the intergranular material, 1828 

and 0 0e /k C  is the cell constant. 1829 

 1830 
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2.4.5.6 Intergranular Cracking 1831 

 Experimental M" and "  spectra for a polycrystalline material known to have 1832 

intergranular cracking were reported in [9]. The spectra were similar to those for two parallel 1833 

RpCp elements in series although the experimental peaks were broader - they could be 1834 

approximated as the sum of two Debye peaks of equal heights separated by about a decade in 1835 

frequency, so that the maxima in "Z  and "M  could be approximated as / 4pR  and C0/4Cp, 1836 

respectively. Computed values of R and C for the intergranular and granular material in the 1837 

cracked sample, using these approximations and assuming a resolution into symmetric "  peaks, 1838 

were: 1839 

 1840 

Lower Frequency (Intergranular) Relaxation in Cracked Sample 1841 

6

max( ")

1
6.4 10  si

Z




   ,         (2.208) 1842 

" 6

max4 6.4 10iR Z    ,          (2.209) 1843 

1.0pFi
i

i

C
R


  .           (2.210) 1844 

 1845 

Higher frequency (Intragranular) Relaxation in Cracked Sample 1846 

7

max( ")

1
1.6 10  sc

Z




   ,          (2.211) 1847 

" 6

max4 2.6 10cR Z    ,          (2.212) 1848 

0.06pFc
c

c

C
R


             (2.213) 1849 

 1850 

 The impedance spectrum was drastically altered after the intergranular cracking had been 1851 

annealed out [9]. A single peak in Z" was observed in the annealed sample that was essentially 1852 

indistinguishable from the high frequency peak in the cracked material, strongly suggesting that it 1853 

was due to intra-crystal relaxation and that the additional low frequency peak for the cracked 1854 

sample was due to thin air gaps. Consistent with this, the modulus spectrum was essentially 1855 

unchanged by annealing since it was unaffected by the high capacitance cracks. The estimates of 1856 

the intragranular and intergranular resistances were confirmed by the 0  data: the observed 1857 

conductivity of the cracked sample was largely determined by the intergranular resistance, and the 1858 

ratio of the conductivities of the sample before and after annealing should have been 1859 

 1860 
6

max max

6

max

" " 2.25 10
3.5

" 0.65 10

low high

high

Z Z

Z

 



 
 


,        (2.214) 1861 

 1862 

in fair agreement with 1863 

 1864 
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3.1annealed

cracked




 .           (2.215) 1865 

 1866 

The combination of modulus and impedance spectroscopies once again revealed details that could 1867 

not be obtained from the original '  and '  data. 1868 

 1869 

2.4.5.7 Intergranular Gas Adsorption 1870 

The effects of oxygen and alkali doping on the electrical response of polycrystalline zinc 1871 

oxide were studied by Seitz and Sokoly [71]. Only the effects of oxygen pressure are discussed 1872 

here. An increase in conductivity was observed with decreasing oxygen pressure and the absence 1873 

of changes due to different electrode materials implied that adsorbed oxygen at grain surfaces was 1874 

responsible for the observed polarization of the sample. The conductivity and permittivity were 1875 

plotted explicitly as a function of frequency and these data allowed M" and "  spectra to be 1876 

calculated without difficulty (unpublished results obtained by the present author). The calculated 1877 

M" and "  spectra exhibited two partially resolved peaks whose estimated magnitudes were 1878 

consistent with a thin high capacitance - high resistance layer determining the low frequency 1879 

response. Both peaks in the M" spectrum had comparable half widths (ca. 1.5 decades) and their 1880 

relative maximum values 48 10  and 21.1 10  (ratio 14) were a good (inverse) measure of the 1881 

relative capacitance of each relaxation: / 13hC C l . The resistance ratio / hR Rl  of the low 1882 

frequency high frequency relaxation could then be estimated from the two values of maxf  (ca. 1883 

25 10  and 
53 10 Hz ) to be about 45: 1884 

 1885 

13
600 45

h h h h

R C R R

R C R R
   l l l l

.         (2.216) 1886 

 1887 

The conductivity estimated from the height of the lower frequency resistivity peak was 71.1 10  1888 

S m
-1

, in reasonable agreement with the low frequency plateau value of 71.3 10  S/m. From the 1889 

relative frequencies of the M" maxima and the relative heights of the (partly resolved) ρ" maxima, 1890 

the conductivity of the high frequency relaxation was estimated to be about 6 110   S m
-1

. Because 1891 

of its higher associated capacitance the lower frequency relaxation almost certainly corresponded 1892 

to an intergranular impedance, and its removal by a reduction in oxygen pressure should therefore 1893 

have increased the sample conductivity by about 45 but have a small effect on the measured 1894 

permittivity (since removal of a high series capacitance has little effect on the total impedance). 1895 

This predicted change in resistivity agreed with the qualitative statement that conductivity 1896 

increased with decreasing oxygen pressure [71]. 1897 

1898 
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 1899 

Appendices 1900 

 1901 

Appendix 2.1 Derivation of M* for a Debye Relaxation with No Additional Separate 1902 

Conductivity 1903 

These derivations are shown for pedagogical clarity rather than mathematical elegance. 1904 
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 1912 

A Matlab®/Octave program for computing the components of M* with added conductivity is 1913 

given below in Appendix 2.2. 1914 

1915 
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 1916 

Appendix 2.2 Matlab®/GNU Octave Codes 1917 

Computation Code for a Debye Relaxation with Additional Separate Conductivity 0 . 1918 

The algebraic derivation is excessively tedious and is replaced here by a 1919 

Matlab®/GNUOctave code that plots both components of the *  and M* functions. The values 1920 

of the input parameters are entered by editing the m-file. 1921 

 1922 

% FUNCTION DebyeCondM Computes and Plots M* for Debye E* plus constant conductivity  1923 

function HD = DebyeCondM 1924 

w = logspace(-6,+6,1200); 1925 

Logw = log10(w); 1926 

E00    = 8.854E-12;  % Vacuum permittivity in F/m  1927 

E0D    = 20;   % Low f dielectric relative permittivity 1928 

EinfD  = 10;    % High f dielectric relative permittivity 1929 

DelE   = E0D - EinfD; % Dielectric dispersion range 1930 

EinfE  = 3;   % High f conductivity relative permittivity 1931 

TauD   = 10^-4   % Dielectric relaxation time 1932 

Sigma0 = 10^-15;  % Conductivity in S/m 1933 

Tausig = E00*EinfE/Sigma0 % Conductivity relaxation time 1934 

E2sig  = Sigma0./(E00*w); % Conductivity contribution to E2 1935 

% CALCULATE E1 and E2 1936 

wTauD = w*TauD; 1937 

Num = 1./(1 + wTauD.^2); 1938 

E1 = EinfD + DelE*Num; %Debye E1 1939 

E2 = DelE*wTauD.*Num + E2sig; % Debye E2 + Conductivity E2 1940 

Denom = E1.^2 + E2.^2; 1941 

M1 = E1./Denom; 1942 

M2 = E2./Denom; 1943 

subplot (2,2,1); 1944 

plot (Logw, E1); 1945 

ylabel("E1"); 1946 

subplot (2,2,2); 1947 

plot (Logw, E2); 1948 

ylabel("E2"); 1949 

subplot (2,2,3); 1950 

plot (Logw, M1); 1951 

ylabel("M1"); 1952 

subplot (2,2,4); 1953 

plot (Logw, M2); 1954 

ylabel("M2"); 1955 

 1956 

return 1957 

1958 
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 1959 

Appendix 2.3 Derivation of Debye Dielectric Expression from Equivalent Circuit 1960 

Impedance of s sR C  is  1961 

   1/ 1 / 1 /s s s s s s s sZ R i C i R C i C i i C               (C1) 1962 

and its admittance is 1963 

 1/ / 1s s s sA Z i C i              (C2) 1964 

where s s sR C  . The total admittance is 1965 

   * / 1 1/s s p pA i C i G i C              (C3) 1966 

and the complex capacitance is  1967 
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     (C4) 1968 

from which eqs. (2.154) and (2.155) obtain. 1969 
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